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ABSTRACT

This dissertation studies several issues involved with implementing
adaptive array processors for signal detection and estimation. The
basic structure which is examined is the estimator-correlator processor.
It establishes a fundamental connection between detection and estimation
theory, and solves the detection problem for the generalized exponential
class of signal and noise distributions.

System modeling and identification represent two of the central
issues studied in this dissertation. Stochastic operator theory and
results from functional analysis allow these problems to be solved
for a wide varietvy of random scattering media. The models are based
on matrix representations of bounded, linear operators.

The integral kernels needed to implement the estimator-correlator
are expressed in terms of Karhunen-Loeve expansions. We assert they
provide the tt _rgtical means to solve the processor equations, give
considerahle insight into their mathematical structure, and estahlish
a link between theorv and practical realization. Calculating the
conditional mean of the channel output requires modeling and identifv-
ing the stochastic scattering channel. A Karhunen-LBeve expansion of
its random Green's function representation is a fundamental approach to
stochastic system modeling and identification.

The numerical issues involved with implementation are studied in
detail., We show how the processor equations can be solved using robust,
state-of~the-art numerical algorithms. The estimator branch is imple-

ented with the CS decomposition. Several interesting relationships
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between the Karhunen-Loeve basis and canonical matrix decompositions
are established.
In summary, ideas from system modeling, identification, detection

and estimation theory, and numerical analysis are combined in order to

- R

implement optimal array processors for signal detection and estimation.
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Chapter 1}

INTRODUCTION

Problem Statement and Its Importance

- e

General Problem Statement

adaptive array processors for signal detection and estimation.

[N S0t

randomly time-varying scattering media.

with respect to range, angle, and Doppler.
modeled by linear,
mitted signal.
provides the means

of propagation and

implemented in an "estimator-correlator” structure (Figure 1-1) [1]}

Vala st AN

each of which is described by a matrix filter acting on the data.

This dissertation studies several issues arising in implementing

We shall

focus our attention on detecting signals that have propagated through

The stochastic nature of the

medium causes the returned signal energy to be a random process spread

These effects will be
bounded stochastic operators acting on the trans-
operator theoretic approach to the detection problem
to solve for the optimal processor for a wide class

scattering channels.

One can show that the optimal array processor structure can be

[210

In other words, the array measurements are directed into two branches,

The

matrix filters Q(+,+) and G(+,+) are found by solving the following

integral equations:

jgN(c, u) Qu, z) du = §(t - 2z) I (1.1-1)
T

f El(t, u) G(u, z) du =-By(t’ z) (1.1-2)
T
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where RN(*,*) is the covariance kernel of the measurement noise, Ey(°,-)

is the covariance kernel of the returned signal alone,'51(°,') is the
covariance kernel of combined returned signal plus noise, T is the
observation interval, and I is the identity matrix. The lower branch
containing G(+,*) will be called the estimator branch, because it calcu~
lates an optimal estimate of the backscattered signal based on the array
data_z(',-). The upper branch will be referred to as the inverse filter
branch, because it represents the inverse °f.§N("')' The outputs of
each branch are correlated to form the scalar-valued likelihood ratio ¢.
In principle, there is no reason why the optimal detector could not
be implemented after solving these equations. However, several
problems will become apparent as we consider in detail how to
implement this processor in a practical working environment. Solving
the equations is so difficult that suboptimal schemes are almost always

used.

1.1.2 Specific Problem Statement

The specific issues which shall be studied in this dissertation can
be summarized as follows:

(1) To study the relationships among detection theory, estimation
theory, stochastic system modeling, and system identification
within the context of the estimator-correlator processor.

(2) To establish the connections among Karhunen-Loeve expansions,
system models, generalized Fourier series, canonical matrix
decompositions, and generalized eigenvalue matrix decompositions.

(3) To exploit the preceding results in order to implement the
estimator-correlator structure with state-of-the-art computational
algorithms.
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l1.1.3 1Importance of the Problem

Most adaptive array processor designs are based on oversimplified
descriptions of the backscattering object and transmission medium. They
are called point scatterer models, and although they assume random
amplitude and phase, their essential features are deterministic. To be
more precise, the backscattered signal 1is represented as a time- and
Doppler-shifted version of the original signal which arrives at the
array from one specific direction. The return can be interpreted as a
point in a three-dimensional space parameterized by time delay, Doppler
shift, and arrival angle. Implementing these processors is
straight forward.

However, a deterministic treatment of transmission channel effects

is rarely an adequate representation of reality. Since many uncon-

trolled factors determine real wave motion, stochastic descriptions are

usually more appropriate. Stochastic media cause the returning signal
energy to be distributed, or spread, over random intervals of time delay
(range), Doppler, and arrival angle. One can tlink of the returned
energy as distributed over a volume in the previously defined parameter
space. The total signal energy available for processing is recovered by
integrating over the entire volume.

This discussion leads to the importance of this work. When a
processor designed for point channels is employed in a stochastic
environment, only a fraction of the returned signal energv is actually
processed. As a result, the overall performance of the detector is

significantlv reduced.
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Total signal energy processed determines array processor perform-—
ance. In order to maximize performance, all available signal energy
must be used. This is why optimal structures must be implemented,
especially in low signal-to-noise ratio environments. The preceding
comments provide the underlying motivation for the work presented in

this dissertation.

1.2 Problem Formulation

A schematic diagram of the working environment is shown in
Figure 1-2. A signal s(*) is transmitted into the medium over a finite
time interval. s(¢) shall be called the probing signal, and we will
assume its characteristics are known and subject to our control. If a
reflecting object is present in the medium, then energy from the probing
signal scatters off the object in different directions. A collection of
sensors called the array is immersed in the medium and is designed to be
sensitive to the signal energy reflected from the object.

All signals not related to the backscattered probing signal
represent undesired interference, and will be called noise. It has two
components: system noise which arises within the processor, and
ambient noise which enters the system through the array. The ambient
noise is spatiallv distributed, but not necessarily isotropically, We
shall combine the internal and external noises into a single process
modeled by a2 zero-mean, Gaussian distributed random vector.

The total output of the arrav is measured over a time interval T

and a spatial aperture A. C.-r objective is to design a procussing

svstem which takes the arrav data and decides if backscattered signal
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energy is absent or present in the measurement, in other words, if the
object is absent or present.

This problem can be formulated in mathematical terms as follows,
The array output shall be denoted by £(°")' It is a complex-valued
vector stochastic process, and the i-th element of E(t' w) represents
the measured value of the {-th sensor in the array at time t.

The background and measurement noise entering the processing svstem
will be denoted by n(+,*). n(+,*) is a zero-mean, Gaussian distributed
stochastic process.

The energv backscattered off the reflecting object will be denoted
by £s(+), or by v(+,*). This process is inherently random even though
s(*) is known; therefore, it must he modeled as a stochastic process as
well., £(+) represents the effects of the scattering object and propa-
gation channel. We shall refer to them genericallv as “the channel,”
even though manv transformations may actuallv have taken place. (*) is
much more than a convenient shorthand notation, It will be discussed
at length later.

Assuming the medium and arrav are linear, when backscattered energv

is present in the measurement:

re, «) = £s(t) + n(r, W)

When the object is ahsent:

rie, w) = n(e, )
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In practice, we do not know which form of r(+,*) is correct. The
process of deciding between these alternatives in a statistically
meaningful sense is called signal detection. Implementing the structure
which solves the detection problem is the basic issue addressed in this

dissertation.

1.3 Basic Approach to *he Problem

Let us begin by describing the measurement model in greater detail,
since it represents a central part of the overall approach to the pro-
blem., We stated that £(°*) represents the effects of the scattering
channel; however, we have vet to define £(+) in mathematical terms, or
to motivate its usefulness in this context.

£(+) is a bounded, linear, stochastic operator which will represent

the overall effects of the medium. This approach is not new. It was

suggested bv Middleton thirtv vears ago [3] and reintroduced more

recentlv bv Sohie [4]. However, we are the first to applv stochastic

operator theorv svstematicallv to the channel modeling and

tdentification problem.

A stochastic nperator theoretic approach is useful for several rea-

sons, First of all, it is clear that deterministic represcntations of

real scattering media are totallvy inadeaquate. Stochastic transforma-

tions must bhe used in order to develop realistic models for the channel

effects, and stocnastic operator theorv provides the means to do so. In

. . N
this dissertation, the stochastic operator modeling problem will be o
o
studied in some detail., Also, althoagh an operator theoretic approach X
>
<~
te the problem is actuallv quite abstract, it allows the detection ~
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Moreover, this allows theorems and ideas from functional analysis and

%

Hilbert space theory to be used to obtain new results and new insights

¥
b 3, 5 Y
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into the modeling issues.
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Now that the nature of £(+) has been described in detail, let us ._-.:{_{-.:
B T S
RCALR ORI
turn our attention to solving the detection problem. We call upon the -‘_:'.':,: -
\.r‘\- \*'-
N L
array processing svystem to make a judgement concerning the nature of Py
' ] CWT
r(+*,*). This problem is distinguished by the facts that the processor ':\" '-.:'.-.
- AL,
. . B AR
has only limited knowledge of the backscattered signal, and that random NG
RIS
noise always obscures the signal to a varyving degree. Hence, it is !“6 Fu
RN LNy
logical to conclude that the required judgement must be a statistical R
AT AT
. . ‘.':'h‘:\'_‘.:;
inference based on results from statistical decision theory. NN
SN v .
BN
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The signal detection problem is equivalent to a statistical hvpo- “;:"‘ '
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thesis testing probiem, in which the hvpothesis that noise alone is
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present is to be tested against tne hvpothesis that signal and noise are
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nresent, These alternatives are expressed in statistical terms bv:
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L
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where H; and Hp are abbreviations for hvpothesis one and the null hvpo-
thesis respectivelv.

The solution to the detection problem is well known and can be
} found in anv one of several references [l}] [3]. The optimal test, or

optimal processor, is prescribed by calculating a real-valued statistic
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of L("') called the likelihood ratio, and comparing this result to a
predetermined number y. If the likelihood ratio exceeds this threshold,
we assert that H; is true; otherwise, we assert that the null hypothesis
is correct.

The processor can be implemented using several equivalent struc-
tures., We have already described the "estimator-correlator” realiza-

tion, in which the non-causal conditional mean estimate of fs(-) is

correlated with a fi'*ared version of the data E("') tc ohtain the

NS ALY
, TN
likelihood ratio. This is the basic structure that will be studied in RO ALA
DAY
this dissertation, NN
Ny 'f -
s ¥a" et n?
There are several reasons why we have chosen the estimator- ;_’.; »
‘o’ .r?:
AL A
correlator structure. First, it establishes a basic connection between N
AN
FACIEAC N
detection theory and estimation theory. This can be seen by comparing 'f:a?::r;
A I
this structure with the structure solving the known signal in Gaussian ;A%; "
rf:-'::('.;r:
noise detection problem (Figu e 1-3). Clearly, the two are similar. ARy
r:.-'_'_‘.-:",
. R ATAN
The estimator-correlator treats the conditional mean estimate as 1if it ¢\,‘E;;:
were deterministic in the subsequent correlation operation. WA
LR
. . Y
While the preceding discussion points out a theoreticallv elegant . AN
. LN
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" e W N
connection between the estimator~correlator and other processors, there -}*;xﬂ;
- ST
@ —_
ire more fundamental reasons why an estimator-correlator realization is 37515 v
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useful., Thev can be seen by examining the nature of the solution in hANASNe
f'.-".-'_t.-t.w
greater detail. A
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Solving Equations (l.1-1) and (1.1-2) for G(-,*) and Q(+,*) pre-
"supposes perfect a priori knowledge of covariance kernels Ry(=,*),

R (*,*), and _Rl(”')' However, in problems of practical interest, this
information is seldom available in advance. This clearly suggests

attempting to implement the processor using adaptive signal processing

4"
A J

techniques; indeed, adaptation is the key to optimum receiver

i
i
&

PO
]
R
'

implementation [5]. The estimator-correlator structure is particularly

[
b2y

useful from this point of view,

We will show that Ry(+,*) and Rj(+,*) can be estimated directly ~5 e
RN

from array data. On the other hand, Ry(*,*) can not be obtained ::_'::-_.:-',.::f.:-
'_‘v‘\'-"\'l v

directlv, since the return £s(°*) is always obscured by background and t"':"""ﬁ
RS LA TN

measurement noise. If a priori knowledge of Ey("') is unknown ov AN
: KA
incomplete, another means must be found to estimate its salient features -:;'_-,':\i}:::-
SRR

in conjunction with the detection process. "‘“.‘ *

This aspect of the problem will be approached from a system
modeling and identification point of view. The stochastic transmission
media, represented generically by linear stochastic operator £(+), can ‘ .

I s » I3 - ‘.
be interpreted as an unknown linear system. By exploiting results from et

functional analysis and stochastic operator theory, relationships e

.
L 4
2
g

4

between B_y(-,') and £(+) suitable for digital signal processing
applications can be derived. 1In particular, the formulations are based
on the matrix representation of £(+) and the spectral representation of
Ey(-,-). Integrating these results into the estimator-correlator

structure is straightforward and establishes a fundamental connection
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among detection theory, estimation theory, system modeling, and system
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identification theory.
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In this dissertation, we will also study the implementation problem

Iy

in some detail. The theoretical analysis and practical implementation

L2
o

are both based on Karhunen-Loeve expansions of the received data. Of
course, the use of series expansions as a theoretical tool in such
disciplines as detection theory and estimation theory is well estab-

lished, and they provide a great deal of insight into the nature of the

-
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optimal processor. However, we assert that they are the key to

oA
e,
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implementation as well. Going bevond formal manipulation of infinite

l(.
2

series, we show how these representations lead to structures which
can be implemented with state-of-the-art computational algorithms,
The results establish relationships among Karhunen-Loeve expansions,
matrix decompositions such as singular value decompositions and QR
factorizations, and generalized eigenvalue problems.

In conclusion, our approach to the problem is based on the

estimator-correlator canonical structure, Within this framework, the

s

interrelations among system modeling, stochastic operator theory,

NN

ay

identification, and orthonormal expansions will be established. The

T
a
1]

solutions to the implementation problem are based on Karhunen-Loeve

S

series expansions. They lead to structures that can be realized through

robust numerical algorithms,
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1.4 Review of Previous Work Carnany
PR
The estimator-correlator structure was first studied by Price [6] ‘ =
. : . ) . : YRt
in the context of the Gaussian signal in Gaussian noise detec- .,:..-P.‘-;.,:
LA
T O
tion problem. He noticed that the solution could be interpreted as a \:\:,:\(1
AT e
;s " Nt : Pt
modification of the standard "correlation” receiver which solves the )
SN
known signal in Gaussian noise detection problem. The modification i=s -:.—'_:.-?.-_‘.‘
elegant and intuitive. Specifically, the optimal estimate of the signal ':: .\ .
BAVAS,
process 1s used as if it were deterministic in the subsequent PY
AL AN
: . ST
correlation operation. PROATAAAE
R NI
. . . X . (SR,
Later, Kailath [7] and Esposito [8] studied this structure in PO
R
more detail. Both argued that it should be optimum or close to optimum ® _
RGOSR,
for detecting random signals (not necessarily Gaussian) in additive -":‘-}'\-' -
-_').-
Gaussian noise. However, their results must be interpreted carefully. .
it
For example, although Esposito was able to show that an “"estimator- ®
.t';-..)_\ ;:l
correlator™ structure exists for a broad class of random signals, it is :-;:'_-l‘: R
o,
RS Y
. " . [ l:'-:.**" -
not possible to interpret the signal estimate as “optimal” in a .;.p%_,
l'. ) 1
meaningful sense except for Gaussian signals. Moreover, since the : .
CATAL
. . . . N
signal process estimates can not be determined uniquely, they actually ‘_.:_.‘-_.'-_.'
) l\ .-'h g
S S
. . . Gy
have little intrinsic value except in the context of the receiver NN
."\’\"-\
structure itself. o
TATETIER
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A few years later, Kailath returned to the problem of detecting DRUASATA
n~.‘| .-\'_'-."1
KRG
non-Gaussian stochastic signals y(+,*) in additive Gaussian noise [9], »:,.-',,\‘_':'{.\
PR A
and proved that the log-likelihood functional has the form: },.._,.:,}_,5
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L 2] L
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~ 1 A 2 ". ""m\-"'n."~ -
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where y(+,+) is the causal conditional mean estimate of y(+,*) given

r(*,*), assuming that Hj is true. Equation (l.4-1) shows that an

[ ) |
"'\"'I'.-"
estimator-correlator interpretation of detection can be generalized to .::\'h::-.:
LN
encompass a broader class of signals. However, the "correlation” '-r"‘: >

s
-
;
&
s’
*

integral has to be defined as an Ito stochastic integral, making

[ ) |

. . . . Aty
practical implementation of (l.4-~1) problematical. Furthermore, Kailath .r"'.n'_:..r'{-\'ﬁ
I f'.:-ﬁ:z

. - . A
pointed out that this result was not merely a question of rigor. ';'}-.‘-,.'-,,._
ey
Other definitions for the correlation integral yield detector structures Y ,
;-':i‘! \..'-
inconsistent with previously obtained results. 0. LA
PN,
. . . AN
More recently, Schwartz extended these ideas to discrete tinme :',.: \_’.\:
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problems [l0], and in addition, demonstrated that the structure is

{

e

optimal when the data come from generalized exponential distributions, a RARISATY
N e LN
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broad and important class of distributions. During this recearch, Ay
SN
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the author generalized his results to the vector measurement case.

Once again, a conditional mean estimate of the signal is the central :
Wi
part of the structure, and it appears in a correlation integral used to e *‘1
ATy
A
calculate the likelihood ratio. However, evaluating the likelihood

=9
L'n
ratio is quite difficult, and as Schwartz himself noted, implementing A
-
this generalized estimator-correlator structure would not be a simple ‘_d-',‘l
YOV
task. e
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Actually, the importance of these results relates to the insights Yol
-
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they give into optimal receiver structures. They show that the YRS
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intuition provided by an estimator-correlator interpretation of the
solution to the Gaussian signal in Gaussian noise detection problem
carries over to more general situations.

The optimum and adaptive array processing problems have received a
great deal of attention for nearly three decades, and consequently,
there is an abundance of literature in these areas. It is beyvond the
scope of this dissertation to present a detailed review of the work
already accomplished in these fields; however, we shall briefly point
out several references of special interest.

Van Trees studied optimal array processing techniques in a classic
report published two decades ago [2]. 1In particular, he examined the
Gaussian signal in Gaussian noise detection problem, and derived several
equivalent forms of the optimal structure, including the estimator-
correlator. Other landmark papers were written by McDonough [11], Bryn
[12], Edelblute and his colleagues [13], and Cox [l4]. Adaptive array
processing has been discussed in Monzingo and Miller [15], Haykin [16],
Hudson [17], and Widrow and Stearns [18]. An extensive bibliography of
current work in this area is contained in a new book edited bv Sibul

[19].

1.5 Overview of the Dissertation

Chapter 2 introduces the concepts, definitions, notation, and
theorems that will be used in subsequent chapters. In particular, the
Karhunen-Loeve expansion is defined, and a method of calculating its
basis from an arbitrary orthonormal basis is introduced.

In Chapter 3, the channel modeling problem is studied. Our

approach is based on matrix representations of bounded, linear opera-
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tors. The results have interesting implications in several disciplines,

including the theory of non-stationary stochastic processes.

Solutions for 0(+,*) and G(*,*) are derived in Chapter 4. Spectral
representations for Ry(+,*), By("')’ and Rj(-,*) are used to solve the
processor equations. Indeed, we will argue that this approach is not
only a useful theoretical tool, but is also the key to adaptive
implementation., The relationship between £(-) and By("°) is estab-
lished and incorporated into the estimator-correlator structure.

It turns out that the relationship between £(+) and Ry(+,*) which

y
is developed in Chapter 4 is not particularly convenient from an
implementation point of view. Therefore, in Chapter 5, the stochastic
identification problem is examined in further detail. Simultaneous
diagonalization of the input and output covariance kernels is used to
obtain a simplified relationship.

The numerical issues associated with adaptive implementation are
studied in Chapter 6. Our results establish several interesting
connections among canonical matrix decompositions and the Karhunen-
Loeve expansions of G(*,*) and Q(+,*). 1In addition, the CS decompo-
sition is introduced as a numerically stable method for obtaining E(-,*)
from array measurements.

In Chapter 7, numerical results are presented and evaluated. We
consider an example of considerable practical interest; namely, detec-

tion in multipath propagation channels. Finally, conclusions and

recommendations for further research are given in Chapter 8.
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Chapter 2

MATHEMATICAL BACKGROUND

2.1 Introduction and Overview

This chapter introduces the concepts, definitions, notation, and
theorems that will be used in subsequent chapters. Results will be
stated, but proofs and derivations will be omitted. The interested
reader can find careful developments of Hilbert space theory and linear
operator theorv in one of several standard texts [20] [21] [22].

We begin bv establishing the mathematical structure in which sig-
nals are represented as elements in separable Hilbert spaces. This
framework allows us to represent signal processing operations as
bounded, linear operators defined over a Hilbert space of interest.
Next, the problem of representing deterministic and stochastic signals
is examined. We introduce generalized Fourier series expansions for
both deterministic and stochastic signals, and the Karhur.en-Loeve expan-
sion is defined. A new method of calculating the Karhunen-Loeve basis
is introduced. Finallv, we discuss deterministic and stochastic opera-

tors, and demonstrate their usefulness in the context of this work.

2.2 Hilbert Spaces

2.2,1 Definition

A Hilbert space is defined as a complete inner product space [20].
An inner product space is a linear vector space endowed with a
functional which maps the product space H x H onto the set of complex

scalars., The functional is called the inner product, and will be
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denoted by < +,* >. This inner product induces a norm onto H which is

given bv the definition
[x[] = < x,x >l/2 (2.2-1)

for all x in H.

Inner product spaces are complete if every Cauchv sequence con-
verges to a point in the space.

Only separable Hilbert spaces shall he studied in this disserta-
tion, A Hilbert space is separable only if an orthonormal basis exists

in the space.

2.2.2 Examples

The set of all N-tuples or complex scalars is a Hilbhert space with

inner product

< x,v > =

noe 2
*
<
~~
o
.
[N}
]
(%]
Nt

for all x and y in H., This elementarv Hilbert space i3 verv useful in
signal processing applications for representing finite~dimensinnal
deterministic signals.

The space of all square-integrable functions defined on an inter-
val (a, b) of the real line can be shown to be a separable Hilbert space
[20]. In signal processing, this could represent all possible finite-
energy waveforms received over a finite time interval T or spatial

aperture A, 1In these cases, a suitable inner product is
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Cxy, v o= o0 v de (2.2-3)
T
The norm !/!x!! represents the energv of a signal x.

1f a received signal is more appropriatelv represented as a sto-

chastic process, a useful inner product definition is:

< x,v > = flﬂx(c,m) v¥(t, W)} dt (
T

(=3
.
ro
i
IS
-

Various combinaticens of purelv temporal, purelv spatial, deterministic,
or stochastic siegnals can he chosen, and clearlv, a large nunmber ot

special cases can be studied in a common framework.

2.3 DNeterministic Signal Representations

2.3.1 Fourier Series

Next, consider the problen of obtaining numerical representations
for signals belonging to a separable Hilbert space H, Since we are onlv
considering these Hilbert spaces, it is possible to find an orthonormal

basis {0k} such that everv element of H has the revresentation

2.3-1)

Bv definition, the orthonormal svstem {¢x} is called an orthonormal
hasis for H, and each complex scalar xy, is called a Fourier coefficient
of x. The Fourier coefficients are directlv related to x through a

simple inner product operation:
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The sequence 0! Fourier coetticients (Xy: 1s called the representation

w

ot x with respect to (9},

ol Interpretation ot GCeneralized Fourier Series Fxpansions

Orthonormal cxpansions ot deterministic and stochastic

provide tne tundamental connection hetween analoy sionals

Sivndls

and therr

fivital representations,  For example, if s(+) 1s a4 determiniscd

Arandlimited to the interval (-3, 3) on the anvular trequency

ste) an he expanded i terns of a veneralized Fourler series

0
sin of(t - nT)
s(t) = n.ic s(nT) S oD

The Fourier coetficients are samples ot s(+),  Frequently,

more convenient (., work with the samples ‘s(nT)}! tnan the

1to1s

actual

s(*). Moreover, it can be shown that Ly is unitarilv equivalent

with the space i» of square-summable infinite sequences,

isomorphism, combined with the direct connection hetween a

This

sional

IX1Is

Siatnal

, then

Ot ten
sienal

20

1nd

its equivalent 1> representation, is the theoretical justitication tor

sampled data or discrete-time signal nrocessing, Problems

tormulated 1

terms of continuous time or continuous aperture measurements mav

easier to solve in their equivalent £) representations,

The choice of orthonormal basis depends on the class

ot

he-

siynals

the designer expects (o encounter. Fxamples ot bases ftrequentlv used in
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s1dnal nrocessing

sphecotdal taoctions, Varhunen-loeve clventunctions, and ¢
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that r.r anv t ¢ T, x(t, *) is a random variable. A Stochastic vector
process is an N~-dimensional vector whose components are stochastic

processes; that fis
i(.‘-) = [xp(e,*) .. KN('-')IT (2.4-1)

where x;(+,*) is a stochastic process tor i = 1,2,..., N. A complex-
valued stochastic process z(+,*) is a special case of a two-dimensionnal

stochastic veotor process:

slu, L) = xle, o) o+ dvit, o) 2.4
tor a.l vt o T and o = ..
a
Sl
Two particular torms of the index set T are important., If T is a ot
'J.'z\' R
sequence t], T, ti,...', then x(+,*) is called a discrete-time RN o
L N
B Y N
stachastic process. mn the other hand, {f T i{s an interval »f the real ® "
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x(t, w) = Xi(w) @i(t) (2.4-3)

Nt-1 8

where 3;(+) is an orthonormal basis, and
Xj(w) = < x, ¢1 >

for all 1 [22]). The functional < ¢,+ > is the standard inner product
defined over the space of interest, The series coefficients {xj(+)} are
random variables whose numerical values depend on the particular reali-

zation w € Q.

¥Yquation (2,4-3) can be thought of as a decomposition, in which a
function of two variables is expressed as a sum of products of functions
of one variable. These decompositions are familiar from the theorv of
partial differential equations, and their significance in this context
is essentiallv the same. Since the basis functions {$5(*)} are
deterministic, we can replace the studvy of an uncountable set of
stochastic processes {x(*,*)} bv a countable set of random variables
{x;{(*)}. Moreover, the ideas from Hilhert space theorv can be applied
to this representation provided the inner product functional is chosen
appropriatelv,

Fauation (2,4-3) is a generalized Fourier series, hence anv com-
rlete orthonormal basis {$;(+)} spanning Ly(a, b) can be used. However,
ore series is important enough to warrant a name. This representation

{s called the Karhunen-loeve orthonormal expansion [25] [26] of x(+,),

ind its nsefulness can be explained as follows, 1f the unique Karhunen-
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Loeve basis is used, a nice "double orthogonality"” results. The basis
functions are orthonormal:
[ 6. (t) o¥(t) dt = 6, (2.4-4)
1 ] 1]
T
and sn are the expansion coefficients:
E(x, (0) x*()} = 2% 6 (2.4-5)
i j i ij
The bhasis providing tor properties (2.4-4) and (2,4-5) can be found bv
solving the integral equation
X(x) o.(t) = [ R (t, u) ¢.(u) du (2.4-6)
i i A S i *
where R,(t, u) = E{x(t, w) x*(u, w)} is the covariance function of
process x(°*,*).

Another important result is Mercer's Theorem {22}, which states
that anv positive definite, Hermitian, square-integrable kernel k(+,*)
can be expanded in a series representation:

* k
k(e,s) = T A% 5 (0 o*(s) (2.4-7)
j ] ] ]

(k)

where {Xj } and {¢j(°)} are the eigenvalues and eigenfunctions of
k(+,+). This is the spectral representation for k(+,-), one which is

particularly convenient for numerical calculations. Since covariance
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kernels meet the preceding conditions, they can be expanded in this

form,

2.5 Calculating the Karhunen-Loeve Fxpansion

2.5.1 Derivation

The nice properties of the Karhunen—Loéve representation can be
exploited to simplifv the structure of the optimal processor. However,
the computational problem involved with solving Equation (2.4-6) for the
basis functions is difficult, and limits the practical applications
of this approach. Another means of calculating the Karhunen-Loeve
expansion from arbitrary Fourier series representations would be veryv
useful,

Let us demonstrate how qhis can be accomplished. Although the
following derivation is for scalar stochastic processes, the results can
easily be generalized to the vector case.

Suppose a random process x{(+*,*) is expanded in terms of an arbi-
trarv orthonormal basis:

x(t,w) = xi(m) . (t) (2.5-1)

e 8

The coefficients {xj(w)} are not necessarily orthogonal:
E{xi(w) x5%(w)} = ryj (2.5-2)
Next, write the covariance kernel Ry(+*,*) in terms of Equation (2.4-3):

Re(t,u) = E{x(t,u) x*(u,w)}
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Since the Fourier series converges to x(°*,*) in the mean-square sense, AT

the expectation operator and the double sums can be interchanged [25]: AR,

=]

R (t,u) = .Z .z E{x, (W) x?(w)}@i(t) ®;(u) y
i=)l j=1 :

@ @

- * -—
= izl jil i ¢i(t) ¢j(u) (2.5-4)
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The double sum is conviently written in vector-matrix notation:
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Re(t,u) = oH(t) Ry #(u) (2.5-5)
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and Ry is the infinite matrix of correlations. It is easy to show that
Ry is Hermitian, which implies that Ry has a unique eigenvalue decompo-

sition [22]:

Ry = U A" UH (2.5-6)
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Then Ry(*,*) can be written

Re(t,u) = oH(t) Ry #(u)

oH(e) A" UH o(w)

NN RO (2.5-7)

k=1

The {pk(+)} functions are a linear combination of the {¢,(+)} basis:

*

ukl (2.5-8)

I o~18

¢k(t) = @Q(c)

L=1

They are orthonormal:
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since the rows of U are orthogonal. Furthermore, the {¢y ()} functions
are complete, since each is a linear combination of a complete ortho-

normal basis.

Therefore, the {$k(*)} set is a complete orthonormal
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basis, and since the basis which diagonalizes the matrix representation
of Ry(+,*) is unique, the functions are the Karhunen-Loeve basis, the

representation (2.5-7) is the spectral representation of Ry{(+,*), and

(x)

the parameters {Ak

} are the eigenvalues of integral equation (2.4-6).
In principle, this allows the Karhunen-Loéve basis and expansion

coefficients to be obtained from an arbitrary expansion, provided the

second order statistics of its Fourier coefficients are known. The

Karhunen-Loeve basis is calculated with Equation (2.5-8), and the

uncorrelated expansion coefficients are given by the transformation
= gH -
X () = U x(w) (2.5-9)

where_EKL(-) and x(+) are column vectors containing the expansion

coefficients. This transformation decorrelates the coefficients, since

X(X) A(X) LR }

E{x, () xo @)} = 8 Elx) ¥ )y = diag ) 4]

In Chapter 6, we will show how to calculate the expansion directly from

data with numerically stable algorithms.

2.5.2 Example

This examnle is based upon a measurement model used frequently by
Nolte and his colleagues [27] [28]. Consider a time-limited stochas-
tic process measured over the interval (-Ty,/2, To/2). Then x(+,*) can

be expanded into the Fourier series
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Karhunen-Loeve eigenfunctions and expansion coefficients be obtained

0f course, the expansion coefficients {xp(*)} are correlated.
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from Equation (2.5-11)?

The covariance operator Ry(-,*) is
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T
¢n(t) = Eﬂ.x(t)
is a linear combination of the complex exponential terms. Equation
(2.5-18) is the result; namely, it is the spectral representation of
Rg(*,*). Since the spectral representation is unique, the functions
{¢q(+)} are the Karhunen-Loeve basis, and the Karhunen-Loeve expansion
of x(+,*) is
2N+1

x(t,w) = 7§ xKL(w) ¢n(t)
n=1

The {xKL(-)} coefficients can be obtained directly from (2.5-10) by a
linear transformation:

EKL(w) = U x(w)

where

(W) = [x (@) o o o Xy ()T

and

x(@) =[x W)« o ox_(]T

The covariance matrix Ryy can be estimated from measured data by
averaging over several sets of measurements. This procedure will be

discussed in Chapter 6.
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2.6 Deterministic and Stochastic Operators

h 2.6.1 Deterministic Operators

L Given Hilbert spaces H; and Hy. A function L(*) which maps Hj into
g Hp is called a linear operator if, for all x and y in H;, and complex

"

W

scalars a:

Y
]
)

Y L(x + y)

]
s

A.

Y

'

;
L(x) + L(y) 7

1]
s

b

L(ax) = alL(x)

\“
o+
N

‘- " »
:.'
%

For convenience, we will write Lx instead of L(x). We will often write
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Lx(t) or Lx(t,w) for x belonging to Ly (deterministic signals) or

<
LIS
)

Ly x Q (stochastic signals) respectivelv. Since systems of practical
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interest are stable in the bounded-input, bounded-output sense [29], we
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need onlv be concerned with bhounded linear operators. Mathematical
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* representations for bounded linear operators shall be discussed in the
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2.6,2 Stochastic Operators and Their Representations o

o
“
A
Ny

Clearly, deterministic descriptions of manv signal transformations
encountered in practical problems are inadequate. For example, wave
propagation through realistic scattering media is described by partial

differential equations whose coefficients are stochastic processes.

b
\ Obviouslv, deterministic operator representations of these transforma-
4
N
) tions are insufficient, and more general representations based on
N probabilistic notations are required. ]
) \:,-.:,\:'_-.::\
: A stochastic operator £(°*) is a mapping defined over a Hilbert ISR
\':'.':‘.::\‘:1
) space H which is indexed with respect to a variable w belonging to a :;:f:ﬂxf:
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34
probability space (Q, F, P) [4]. An example of a linear stochastic
operator defined over cN is an N x N matrix whose elements are random
variables. w could represent the value of an unknown physical quantity,
such as the velocity of wave propagation in a medium,

A useful representation for stochastic operators defined over Lj is
the random Green's function representation. This description can be
justified on physical grounds since one can demonstrate that solutions
to the stochastic wave equation are written in this form [30] [31].
Furthermore, models for range spread, Doppler spread, and double spread
channels can also be expressed as random Green's functions [l].

A random Green's function representation for £(+) is given by:

©

y(t, w) = £x(t, w) = f h(t, 1, w) x(1, w) dt (2.6-1)
-

The random Green's function h(+,*,*) is the impulse response function

for a linear stochastic system, and is a generalization of the impulse

response function for a linear, time-variant deterministic system.

This description of the medium establishes a connection between the

physical description of realistic scattering media and the system

theoretic representations familiar to engineers and applied

mathematicians. A more detailed discussion of this approach to linear

stochastic system modeling is contained in a recent monograph by Adomian

{30].
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Conclusions

2.7

Ve have established the mathematical structure which will he used
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linear operators defined over Hilbert spaces of determinis-

bv bounded,

tic and randcom signals.

N
The Karhunen-Loeve expansion was defined and discussed in some

Its properties will be exploited later when the implementation

detail.
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Chapter 3

MATRIX REPRESENTATTONS OF PROPAGATION AND SCATTERING OPERATOHRS

3.1 Introduction

We shall begin bv examining the channel nodeling problem in detail.
In this chapter, the goal is to derive mathematical representations tor
those deterministic and random transformations frequently encountered in
practical arrav processing problems. We are especiallv interested in
developing numerical representations that are convenient for digital
signal processing applications, and that can be incorporated naturallv
into the estimator-correlator structure. The approach is based on
matrix representations of bounded, linear operators.

This chapter contains several new results. The matrix represen-
tations for deterministic operators defined over the Hilbert space of
handlimited signals were introduced hv Sibul and the author [32}.
Furthermore, the results have interesting ramifications in the theory of
non-stationarv stochastic processes,

Ve obtain novel representations for vector-valued deterministic and
stochastic signals, and for operators defined over these Hilbert spaces.
Matrix representations for beamforming and multipath propagation chan-
nels are derived. The model for the multipath channel is a generaliza-
tion of a model which recently appeared in the literature [33].

Section 3.2 introduces the fundamental ideas which shall be used
throughout the chapter. In the next section, we introduce matrix repre-

sentations for bounded linear operators, and show how thev are useful
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tor discrete-time processing applications, Tn demonstrate their use-
fulness, matrix representations for delav, time stretching/
compression, and simultaneous time delav and stretching viven band
limited signals will he worked out.

Yext, matrix representations for stochastic nperators will he
developed., The representations are equivalent to those derived for
deterministic transtformations, and can be used to model spread
scattering media.

In Section 3,4, matrix representations for vector-valued processes
will he studied in some details Tt will be seen that convenient
rrthonormal hases can he constructed from simpler tunctions, Matris
representations for operators defined over these spaces are constructed.
Actnallv, in seneral, the representations for these operators mst be
regarded as tensors, since thev are indexed with respect to tour
indicies. Fortunatelv, if the basis is chosen judiciouslv, the
operator representations can be greatlv simplified.

Finallv, matrix representations of rultipath channels are derived.
The result is a veneralization of a mndel which recentlyv appeared in the

literature,

7.2 Deterministic Operators

3.2.1 Flementarv Transformations

Let us define several elementarv signal processing transformations,
heginning with propagation delav:

r(t) = s(t = 1), 1 >0
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In the absence of noise, the received signal is a delaved version of the RS
PR RN
‘c'«f\j'\:“n
transmitted signal s(+). °
o : - NTNAN
Time stretching/compression is a generalization of Doppler shifing NN,
R A AT
'-:,-“ f\'f\
which applies tc wide band signals. 1t is defined bv ":-."-.':_\:-n.
‘ r*fflsf\
ata s
r(t) = s(at) &
e
Ne
-.'--
for a > N, Simultaneous stretching and delav is .
oA
‘ .
r(t) = s(alt - 1)) . N
- M
- *
G oy,
A combination of the two previous transformations. K dx

These ideas can be generalized in a slightly more abstract setting.

If s(+) represents a finite energy signal, then s(+) and r(-) can be
represented as elements in Ly or an appropriate subspace of L), which
implies that the transformations defined ahbove can be represented as
linear operators mapping elements from an input space into an output

<pace. The operators are defined implicitlyv:

NN s S S WS v e

r(t) = Ars(t) = s(t - 1)

. The stretching/compression operator Ay(+) is:

Ags(t) = s(at)

Simultaneous stretching and delav is

Ag s(t) = s(a(t - 1))
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This operator is a cascade of Ag(+) and A (-):

Ag(*) = Aq AL(")

It is easy to show that all three operators are bounded and linear.
An explicit representation for a linear operator £(+*) can be

defined bv a Green's function representation:

@0
4

£s(t) = ; h(t, ©) x(1) dt

—co

which is a convolution integral for a linear, time-variant svstenm., The
use of this representation in signal processing applications is well

established [1] [34].

3.2.2 Matrix Representations of Bounded Linear Operators

The operators defined in the last section are useful in continuous
time signal processing problems. However, for digital signal processing
purposes, equivalent operators for sequences are needed. Furthermore, a
representation which unifies the so-called implicit and explicit defini-
tions presented above is highlv desirable.

Ve propose using matrix representations of the continous time
operators. The definition begins bv expanding r(-) and s(+) into

generalized Fourier series:
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The coefficients {< r, ¢x >} and {< s, ¢k >} are the Fourier coeffi-
cients of r(+) and s(+) with respect to the basis {¢y}. Then the matrix

representation [2jj] of an operator £(+), where
r(t) = £s(t)
is found by calculating the inner product
2ij = < £¢4, ¢i > (3.2-1)

The Fourier coefficients of r are obtained bv evaluating the sum

L.. 5.
1] ]

[
e b~

Of course, the model parameters {lij} depend on the choice of basis
functions used to model the signals., Suitable choices for practical
applications include sampling functions, complex exponentials, prolate
spheroidal functions, the standard basis, and Karhunen-Loeve eigen-
functions. Some important properties of matrix representations are
independent of the specific basis. This allows the modeling and
identification problems to be examined from a fundamental and unified

perspective.

3.2.3 Fxanmple: Time Delav

Let us work several specific examples to illustrate the preceeding
ideas. Suppose that s(+) is a band limited signal whose Fourier trans-
form vanishes outside the frequency interval (-g, o). Then s(+) has the

following generalized Fourier series representation:
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(3.2-2)

o(t - nT)

sin o(t - nT)

Z s(nT)

s(t) =

n=-—e

If the sinc functions are normalized

where T is the sampling interval.

by the factor 1/V/T , they form an orthonormal basis for this subspace of
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From the result presented in Equation (3.2-1)
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This integral is evaluated in the Appendix using contour integration.
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amn = (3.2-5)

and the matrix representation of A (*) reduces to a shift matrix
analogous to the Z matrix introduced by Kailath and his

colleagues [35].

3.2.4 Digression: Application to Non-stationary Random Processes

The matrix representation of delay operator AT(') has some inter-
esting ramifications in the theory of non-stationary stochastic proces-
ses, In an attempt to measure "how far” an arbitrary discrete-time
stochastic process deviates from wide sense stationarity, Kailath and
his colleagues introduced the concept of displacement rank [36].

The displacement matrix éR is defined by:

R =R -2zRZT (3.2-6)

where R is the infinite-dimensional covariance matrix of the stochastic
process {x(+,<)}, and Z is the lower shift matrix given by Equation
(3.2-4) for k = 1. They argued that the rank of §R is a measure of how
far x(+,*) deviates from wide-sense stationarity.

The Z matrix can be interpreted as the matrix representation for
A;(*) with respect to the standard basis. Calculating the matrix
elements in this case 1is trivial; however, only integer multiples of the
sampling interval can be represented. Our representations allow these

ideas to be generalized to arbitrary time shifts,
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3.2.5 Time Compression/Expansion

X S
: Next, the matrix representation for a time stretch/compression Savav o
- operator will be calculated. Let Ag(°) be defined as: W% *g:\:
\ .
¥ N

N

' ".-".ﬂ:}*'.-
" Ags(t) = s(at) NN
;‘ I'\n'\n.$n'
. .

. for a > 0. GG Ly

. Its matrix representation is given by
\

bl . K3
v 2 =41 i sin og(at - nT) sin o(t - mT) dt g
‘ mn T o(at - nT) o(t - mT) <
=00
5 S -
] e A
S
AR
i i P . I ACACA
2 The calculation is straightforward and similar to evaluating (3.2-3). AT
o

. The answer is -

- sin(oT(am - n)/a

: a = SinCoX )/a) (3.2-7) ;
. mn (oT(am - n)/a) ]

. If there is no stretching or compression, then a = 1, and
.

. sin 7(m - n)

, = = §

rn m(m - n) mn
®
. A
P '\-.:.'
: which is the identity operator. T

b e

N 3.2.6 Combined Propagation Delay and Stretching/Compression ‘};
ool
: This example illustrates several interesting ideas which relate
cascaded operators to their matrix representations.

Begin by defining the operator Agq(+) implicitly by the relation
N Ags(t) = s(al(t - 1))
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) which is the combination of delay and stretching. We have already shown

LN o
; SO
that Ag(+) is equivalent to cascaded Ay(*) and A(+): ;!.;hé;t
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As(') = Ay AT(') st
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Its matrix representation can be calculated in two ways. The first is

by the original definition:

Lahhe
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d a Y sin o(at - at - nT) sin o(t - mT) dt
mn T o(at - at - nT) o(t - mT)
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with the result
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sin og(at - (am - n)T/a)
(. 8 - " olat - (am - M)T/a)

v~y @

-’/.d’-
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(3.2-8)
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, The second is by cascading the matrix representations of Ag(+) and

- .

Ar(*). This can be performed by multiplying the two infinite matrices

together:

) a_ (a,1) = Y a_.(1) a, (a) (3.2-9)

PP

where the {amj(')} are the delay operator matrix elements, and the
{ajn(-)} are the stretching/compression elements. From Equations

¥ (3.2-3) and (3.2-7), we want to calculate

(302_10)

E sin o(1 - (m - j)T) , sin(oT(aj -~ n)/a)
j=n o(t - (m - §)T) (oT(aj - n)/a)
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This sum can be evaluated by rearranging Equation (3.2-10) and applying e

J
Shannon's Sampling Theorem. Rearranging (3.2-10) yields AP A

2 m e o

¢ sin oT(j - n/a) * sin(o(x = (m = §)T) - ROTRDe
Z oT(j - n/a) o(t - (m - j)T) (3.2-11) .'s, i

j=—w

Let k = m - j. Then the sum becomes

- i

—E sin oT(m - k - n/a) sin o(1 - kT) AT A ]
oT(m - k - n/a) a(t - kT) ®

k=w

[
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(3.2-12) ol

E sin o(mT - kT - nT/a) sin o(t - kT)
o, o(mT - kT - nT/a) o(t - kT)

5
et
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Now for bandlimited f(°),

@

£(t) = T E(kT)

k=

sin o(t - kT)
a(t - kT)

We immediately equate

_ sin o(mT - kT - nT/a) _ sin o(kT - mT + nT/a) _
FKD) = =50aT < kT = nf/@)  ~ (kT = =T + /o) (3.2-13)

which is bandlimited to (-ac, ao). Therefore, the right hand side of

(3.2-12) is o
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sin o(t - mT ~ nT/a) _ sin o(atr - (am - n)T)/a)
o(t = mT - nT/a) o(at - (am - n)T)/a) ’
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This example demonstrates that cascading linear operators defined

over Ly spaces and their matrix representations is equivalent. Compu-

h Y
Y

-~
tationally speaking, it is usually easier to determine the matrix Bjk

2R
yan

XIS

L} ).‘J\" s )

representation of cascaded operators directly from the definition rather .

,.
et
Y
X
fuinth

than by multiplying large or infinite matrices. It is interesting to
note that by applying Equation (3.2-9) to cascaded operators, we obtain

a method for computing products of infinite matrices.

3.3 Matrix Representations of Stochastic Operators S
e
_--’_.-..'.-"'q'.
3.3.1 General R
Seneral rET
AT AL AN
Two fundamentally different matrix representations are associated A
- a‘" .u“'-n\ |
. , L

with stochastic operators: Those characterizing £(+) itself, and those A A
NN

. representing its statistical properties, Both are useful in signal and .

, array processing applications. In this section, we shall examine only i*
L) .
. . . o o
the first type of representations. Those defined for statistical A RN
3 ‘J?.-?'.’:;J:‘J
. . . : J-“‘ -‘Pl .’.--J
: measures of £(*) will be examined in Section 3.3.3. TSt VL
0 ‘.‘_'.f\'.r‘z v
. 'a':}::¢:-
3 The matrix representation of a stochastic operator £(*) with re- v::;e\r¢
] - - -

spect to a basis {¢i} is defined exactly as in the deterministic case:

Qij(w) =< £95, 01 2 (3.3-1)
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Fach matrix element {£;j(+)} is a random variable whose numerical value
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3.3.2 FExamples

Suppose £(+) is defined in terms of a random Green's function

representation: :
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) -]
£() = [ h(t, 1, w)(*) dr
\ 00
o
v The matrix representation of £(+) is:
i)
k) -] [
' (W) =<&_, 6. >= [ {[n(t, 1, w ¢,.(1) dt} ¢¥(t) dt
) =) s ’ » 3 3
. ij it i 3 i
-0 —c0
) ]
»
)
[} -]
y *
= [ [ h(t, 1, w) ¢ (1) ¢3(t) dr dt (3.3-2) —
] 1 ®
-—C0 \ "
; :":":'\'-:
N . . .!‘ (\‘_‘-*:»
Notice that the time dependence of h(-,+,*) does not appear in its '.r'a:.r:)'
AN, ]
. : . RERSRTO N
’ matrix representation. Therefore, we have a means of representing a RA
o |
et . . i AR,
! time-varying system with coefficients that are time-invariant. IO,
: -“.{”a:.-\'
) N T~
. The random Green's function representation can be used to model .\_.:ﬁ:_.:_':
: AR
o range spread and double spread media. For example, a signal y(-,*) "“:L“‘
SRR .
X returned from a range-spread channel can be expressed AT
b [ '.::'\.': ]
" .:" .-":~':
i (t, w) = [ b (A, w) s(t = 1) dA ARG
’ y(e, [ o0 ) NN
1 <
' where br(*,*) is a sample function from a zero mean complex Gaussian ‘-:,-\
l‘."\ ~
A S
random process, and A is the spatial variable. 1Its matrix representa- "l_ :'.,-1
o
_ tion is B LY
‘ n
" "
\ "
Zij(w) =< £65, o1 >
a a0
. *
. = [ { [ b (h, w) ¢ (t = x)dr} ¢ (r) dt
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= [ [ bt ~2r/2, 2, w ¢5(c =) ¢3(t) dr dt (3.3-4)

3.3.3 Matrix Representations of Covariance Kernels

We will find that the matrix representations of integral covariance
kernels provide useful insights into several problems which will be
studied in this work, Their derivation is straightforward, since it can
be shown that if {¢x(*)} is a complete orthonormal basis spanning
L2(T), then the functions

_ . *
@kl(t, s) = ¢>k(t) ¢£(s)

are a complete orthonormal basis spanning the product space Lp(T) x
Lp(T) [22]. This is the space of all square-integrable functions
k(+,*), and since we have assumed all stochastic processes have square-
integrable covariance kernels, they belong to this space. Therefore, in
terms of the basis {&yg(-,*)},

o

Rx(t, s) = kg—-l 121 <Ry 6 0, > ¢k(t) %(s) (3.3-5)

where

* _ * _
<R, 0 6, > = { 4 R (t, s) ¢ (t) ¢2(s) ds dt (3.3-6)

Equations (3.3-5) and (3.3-6) can be expressed in terms of expansion

coefficient cross-correlations, because
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Rye(t,s) = E{x(t, w) x*(s, w)}

By exchanging integration order in Equation (3.3-6),

<R, 9 ¢; > = E{{ { x(t, w) x*(s, w) ¢:(c) ¢,(s) ds dt}

k

= E{[J x(t, w) o}(e) de][] x*(s, w) ¢, (s) ds]}
T T

= E{x (w) x;(w)}

Therefore, Ry(*,*) can be written in the form
Re(t, s) = oH(s) Ry o(t)
where

eT(e) = [91(t) d(t) o o o )

(3.3-7)

and the infinite matrix Rx 1s a matrix of Fourier coefficient cross-

correlations. Ry i. the matrix representation of Ry(-,*) with
respect to {¢1(*)}.
the off-diagonal terms of Ry vanish. In other words,

sentation of Ry(+,*) is diagonalized,

3.4

Representations for Vector-Valued Processes and Transformations

Notice that when the Karhunen-Loeve basis is used

the matrix repre-

3.4.1 Signal Representations

Numerical representations of vectonr-valued signals are essential

for array processing applications,

Therefore, we next take up the
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problem of representing signals 1(-) defined over the product space
Lo(a, b) x CN, where the interval (a, b) is the index set of continuous
time variable t, and CN is the set of complex-valued N-tuples repre-
senting N channels of data. We seek equivalent ¢y representations of
this data.

The first step in solving the problem is defining a suitable inner
product functional over the Hilbert space Ly(a, b) x ¢N. one such
functional is

<x, v>= ET(C) X*(t) dt (3.4-1)

BN T

which is convenient for signal processing applications, because the
induced norm |lx|| has the interpretarion as total signal energy summed

over all N channels.

Provided a complete orthonormal bhasis exists,

x(t) =
i

e~ 8

| xi 11(t) (3.4-2)

and as before, the Fourier coefficients are given bv

for all {1,

In principle, Fauations (3.4-2) and (3.4-3) can be used to obtain a
numerical representation for x(+), However, it {s not readilv apparent
how a suitable basis {$y(+)} spanning the product space La(a, h) x CN

can he found. A method of constructing an orthonormal basis from those
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Expanding Equation (3.4-5) gives A

< g, .. > =

|

i

o]

[
o

£ of(0) el de =gl ¥ =0 (3.4-6) PTIIAIIN
o

where gi is defined by

: b b
| g, = [ [ & o3(e) dr . . . [ g (6) ¢i(c) dt (3.4-7)

T
i J .
a a N

ke
“Ah

an N-tuple of complex scalars. Now, since {EJ} is an orthonormal bhasis

»

AR ]
&
&"\'-:? h ]

2

AR
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for CN, Equation (3.4-6) implies gi = 0 for all i. This means that

P ALY
l"f".‘a
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P
RAARRAR

h 2]
xx
3y

>
b
‘@ NN

h
[ e (t) ¢f(t) =0 (3.4-8)
a

AN

VeANY Y
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where (3.4-8) is the mth element of gi. (3.4-8) immediatelv implies

4

that for m = 1, 2,..., N, gn(+) is identically zero almost evervwhere, {':‘
A
because {¢i(*)} is an orthonormal basis for L(a,b). It follows from j;:::f:}:;;
MO
e e A\
WENIRAN LSy

Equations (3.4-6) and (3.4-8) that for (3.4-5) to hold for all possible
i and j, g is identically 0 almost evervwhere. Therefore, from Theorem
11.3 in Gohberg and Goldberg, {iij(')} is an orthonormal basis for Lj(a,

b) x cN.

Now that an orthomormal basis for Ly(a, b) x C¥ has been con-

rerrit
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But

L N
e, (6 = .Z ‘Z
i=] j=1

Combining Equations (3.4~9) and (3.4-10) yields

() = 1§ <x, 0, > (1] <18
k £ ij
SLLLL g, 8,0 <x, 0,
i3 k2

<

L¢ ¢

“ke’ —ij

(3.4-10)

(3.4-11)

Now, this equation expresses v(+) in terms of {gij(-)}, and of course,

ij —ij

v(t) =] ] y.. 8. .(t
ij

)

(3.4~-12)

Equating coefficients <.X’ iij > in (3.4-11) to the equivalent represen-~

tation in FEquation (3.4-12) implies that

<1’——ij>=£%<
or that
yij =
where
Yk T

P R S e e e e e e e e e T T
e T T e T e N
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(3.4~-13)
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for all i and k, and for j and £ =1, 2,..., N. This result which NN
Vi
o
relates the representation of _’E(') to the representation of X(') leads X ° \
. . k3 ] \. \.'ﬂ' \.-
to the following definition: LR
s
) N NN
Let {$i5(*)} be an orthonormal basis for Lz(a, b) x CN, and let Bt
W AN
>
. . . ! o
L(*) be a bounded linear operator defined over H. The matrix represen- 5". d
PSSR
tation of L(*) with respect to basis {$;3(<)} i i b ""':-:\ o
) p S i3 is given by RN
. AT AT
1 ‘.r_'.r_‘r{.r_'.-
AL A S
215kg = < Ldkg, 243 > (3.4-14) RGNty
— ] KT n s ’n
L
:._I'.\((\;-
for all i and k, and for £ and j = 1, 2,..., N. O N
AR
NN
Representations for stochastic operators defined over Lj(a, b) x cN ,'_-'.{-‘.:E:}'.'_'
. RS
. Y
are obtained the same way:
2ijkaw) = < 29rp, 015 > = < ok eg, 01 j 2 (3.4-15)
The {2jjkg(")} parameters relate the generalized Fourier coefficients of
the input signal to those of the output process analogous to Equation
(3.4~-13).
Strictly speaking, the representation (Qijkg} must be regarded as a
tensor rather than a two-dimensional matrix, since the parameters are
indexed with respect to four variables., Obviously, this is not the most
. -
numerically convenient representation one might want to use in an appli- Y -
ﬁ' :.':>ii- Q
cation. However, the representation can be simplified by choosing the - _.
basis properly, ;
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and the coefficients {2kgmn} are found by

)
¥
!
Zkgmn = < LB ®mn» kg 2 = < LB én en» dk & 2
‘
The product space Lp(-m, m) x c is a Hilbert space with inner product
functional
o m .
. 0 -
: <x, v o= [ x(e) y¥(e) de (3.4-21) AP
: - RO
‘ ]
EC AN
for all elements % and y in H. [ ]
. - = PN,
.. . . . . o C'*‘:',".-?::
- Let us demonstrate how a judicious choice of basis simplifies the ._-_,.‘:,\v_,._-,.
- [ 4
. , _ , R
. matrix representation of Lg(+). A natural selection for the {¢x(*)} RON NN,
» o,
's]
] functions is the complex exponentials:
: or(t) = edkt
and the standard basis for the {eyx} vectors (k = 1,..., M). Then . i
RS
- ;.} x‘:\':\:h
. " m . - ‘q\:u\:n."-
o - -1 W NN
- lk = f L ¢k(t) ¢k(t) dt ET e = 62 f eJk(t TIL) eIt 4 .\}s:;\'\'
N Lmn a5 m 4 - no_n PN PN
L
» _‘_- ", .‘:- o
: AR
. - J\:,'\J\-.j
ikt, 7 j(k - m)t ikt SR
-3 - . - S
8,0 © % _1{ e dt = e 2 8 80 (3.4-22) NOS
\ for k = euey =1, 0, l,0ee, and £ = 1, 2,..., M. The Tq is the delay SN
- :'-" :‘ s :‘4‘:-'
. ; NN
W introduced into the 2th sensor measurement. _,:_,:iﬁ
- Equation (3.4-22) shows how the selection of basis simplifies the
- matrix representation. Its kth column is
%
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which is the steering vector for a narrowband signal centered at w =
kwgs This shows that a narrowband steering vector is simply a special
case of a more general beamsteering operator which applies to wideband

processing.

3.4.4 Matrix Representations for Multipath Channels

In the next example, matrix representations for multipath propaga-
tion channels will be derived. The received data are defined over a

Hilbert space Lp(a, b) x cM and have the canonical representation

™ M
- T
r(t, w) L z rij(w) ¢;(0) e,
i=-= j=]

The transmitted sign~l s(+) will be modeled as a deterministic, scalar,

periodic function with Fourier series expansion
co . k

t

s(t) = T s el

How can the representation {sy} be related to the {fij(')} para-
meters in a multipath channel?

In a multipath environment, energy from a common source arrives at
the array from several directions. A model must take three phenomena
into account; namely, a time delay Tp(') common to every path due to
range delav, a random real-valued scalar representing propagation loss

due to distance, and time delay due to wavefront propagation across the
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array itself, The latter time delay depends on the arrival direction of
the wavefront and the array geometry.

Without loss of generality, the matrix representation will bhe de-
rived for a single arriving wavefront. The result is easily generalized
to multiple wavefronts due to linearity of the medium,

In the absence of noise, the array measurement at time t is:

Tb(w) s(t - Tp - 1)

(t, w) = . (3.4-23)

blw) s(t - 15 = u)_]
where b(+) represents propagation loss, Tp is the delay due to distance
traveled, and 71y is the time delay at the ith sensor due to the arrav
geometry,

Rewriting Equation (3.,4-23) in operator notation gives

r(t, w) = &s(t)

where
T, 0| |Blw) 0 ||ty 0 I s(t)
P . 1
£s(t) = . . . .
O LT 0 b(m) 0 LT
_ P e ML sy _

and both r(+,+) and s(*) can be expanded as:

o
r(t, ) = 7 7 r .(w) ¢ (t)e,
L jotw yy U i =]

- . I AP R N R L P AL I N A R L P N VL P R PP S P e TP P T
T et 8 Tt A G S AN R A L AR S AU

-
0
»

AR
Py
L8
e
r 8
.

v

I"'
P
Vol
[y

E’

.‘ v
[ 3 ‘.5,‘ . ’
a8 Y
AN
LI o0

A
27

4
LY
1"?:

n
» Ii
'.‘:
&
b
MY

C

et
'\‘-\. h)
-5{5.
ﬁ}
s

,
{\

)
o
~5
. -

SN Y

Y
R
AR

(LY

5
At

'$§5.
f\f¢
S

i
é

Pl S

o Ay
NN,
aip
AR

v
{ﬁ
Y
XN
|
-

SN G L
e
2
A A 5
IS
e

)

P
A

f\r.'r ’.l ': ". «
." [ALN
éd
I 1
£

. -l.

S &P

AR

N
1,

X
s

. B
LAY
A0
A g

»

“»

(X d

-"' .

HLAL PP

!

Ny

P
o
PAOALS .,4
et

v
‘.7
‘,l -

AN
“8s
.
.
CASY
ll“l:

&80 00 N
'l
.
ve

.
"
.
.
BN
NN

-
q:ﬁ”'._

S WL RS
._{_¢ B -f‘ '.‘\ 5




Hl

o

s(t) =

Woe—1z
w
R
-
~~
T
N
|
P

9
L

i=—w

The matrix representation of £(+) is computed by

frgmnw) = < £€8mn, Sk >

where the inner product functional < +,+ > ig

<x,v>=] iT(t) y¥(t) de
T

. ..-
a
L
.'I.:l_:"
XA

LA

v 6 a2 8
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ANN
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«
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Refore proceeding with the calculation, a suitable hasis rust be

A
X
.;-

chosen, We have alreadyv proved that a basis spanning Lo(a, b) x cM can
be constructed from products of basis functions spanning the indi-
vidual spaces. In principle, one could choose anv arbitrarv {$yx} and

{ex} from a wide range of choices. However, a judicious selection of

&
P A

basis might simplify the matrix representation. Since s(+) is periodic,

l.l'
Lyl

5
TNy

-

the natural choice for the scalar basis is the set of complex exponen-—

2

tials. It is not clear what constitutes a good choice for the {ey}
basis, therefore, let us try the standard basis firstc.
In terms of the standard basis,

T x *
= & = =9
Zkimn(W) <sp by > { (‘°m(‘) e ) ¢ (1) e, dt (3.4-24)
n

RZZRRR

where T is the observation interval, and Tg = 2n/wq. ‘n}!y:?:!
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(3.4-25)

rn} ¢>m(t)

boexp{-jmo,

blw) exp( -meorp

Substituting (3.4-25) into Equation (3.4-24) gives

S @

(3.4-26)

(t) dt

*
k

n

T

T} b)) [e () e
0

—-jimw, T
}
Gnk 62n b(w) e 0'p

62n exp{ —meOTp} e)'.p{—_]mm0

zk}lm.n(w)
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the kth column

Indeed,

reduces to a simpler matrix structure.

matrix is
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e IkugT)
IEASTA : (3.4-27)
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The column vector is simplv a steering vector for a narrowband signal ~f
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frequencv kwp, meaning that the matrix operator can be interpreted as ®
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an infinite set of steering vectors acting on the individual frequencv “y
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In order to generalize the result to multipath channels, the
representation for each path is summed element wise, vhich is permitted

since we have assumed a linear medium. The k-th column of the matrix

becomes
P .
R -k .
bob (w) e 0T v (3.4-28)
© i i —ki
i=1]
where p is the number of paths, 1 is the delay due to the i~th path, F:_\_\Sg
i PAIANY
and {vyi} are the narrowband steering vectors associated with the k-th .f\i\ﬁ;:\-
A ',.'s:.'\.\
. .' " ‘ X
Fourier coefficient of s(+) and the i-th wavefront arriving at the .ﬁsﬁxjrgr'
®

arrav. B

3.4.5 Discussion
A special case of matrix representation (3.4~28) has appeared in
the literature. Recently, Paulraj and Kailath [33) developed a multi-

path channel model in the context of an optimal beamforming problem.
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Their model for the arrav output r(+,*) in the absence of noise is

written:

<

&%
2.2

P

Py
) N

r(t, w) = A f(w) s(t) (3.4-29) .
- - - “

P s
ﬁfl‘;’-

+

where s(+) is a deterministic, narrowband signal, A is an ! x p matrix
of steering vectors representing the arrival directions of p wavefronts,
and i(-) is a p x | random vector whose ith element is a complex scalar
representing the path loss and phase shift in the ith path.

Let us demonstrate that their multipath channel model is simplv a
special case of our model. Assuming that s(+) is a narrowband sivnal

in the form

s(t) = e o

then s(+*) is a special case of the Fourier expansion used in the last

section,

0 k # 1
S =
1 k = |
and rearranging A f(w) gives
p
A f{w) = ; f (w) 3,
- g=1 1

7'}LJ'T

From Fquation (3.4-28), the matrix representation relating the series

A
ors

»
*

expansion coefficients ot s(*) to those or r{+,*) is
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Equating the {fi(*)} terms with the {hj(-) exp(—iynrp)} coetfficients,
and equating the steering vectors {aj) with {vi; demonstrates that

Paulra) and Kailath's multipath model reduces to a special case of

Fquation (3,54-28),

3.9 Conclusions
Matrix representations of bounded, linear operators provide o
convenient means ot nodeling deterministic and Stochastic sivnal rrans-

tormations which arise in arrav processing problems.  Thev dare well

suited tor digital signal processineg applications since thev are hased
upon orthonormal representations of those siynals under examination. 1t
is clear that selecting a bhasis jnadiciously can simplity the operator
mode ling problem a great deal.,

Wwe have obtained new results that shed new licht into classical
siyrnal theorv issuwes. In particular, the representatinns for time delav
aperators yives new Insiyght into tne theorv of aon-stationarvy stochastic
DEOCEeSSeS . Hocourse, onr interest in matrix representations voes
hevond theoretical coansiderations alone, The tinal purpose of this work
is ta develop stochastic and dererministic nodels that can easily be
incorporated iato the estimator-correlator tor subsequent identification
ir conivnction with detection,

These comments lead to a verv important issue which deserves

tnrtter diseonssion, Al o the models presented Iin this chapter are
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based on orthonormal series expansions of deterministic and random

processes., Nf course, manv other methods nf signal and svstem modeling

have been extensivelv studied over the last fortv vears, wspeciallv

state space and parametric or rational transfer function models. Why

has a Fourier series expansion approach to the modeling problem heen

selected?

First, this approach yives considerable insight into the nature and

structure of £(¢),

For example, we showed how a beamforming operator

for widebard, periodic signals can be represented as a niatrix whose
’

columns can be interpreted as narrowband steering vectors. This 1s an

intuitivelv pleasing result, and it vives phvsical meaning to an

ahstract result that mnivht he completelv missed {f other =models were

used.

Second, these representations allow for a svreat deal ot flexi-

hilitve Anv basis spanning the signal space can be used, and we have

alreadv demnonstrated that a judicious selection of hasis can siaplifv

the modeling prohlem. Furthermore, this allows the detection nroblem to
*

he solved venericallv for an arbitrarv set ot veneralized Fourier

coefficients. This is important, since discrete Fourier transtforms are

nsed freaqnentlv in practical applications,

Matrix operators avold difficulties inherent with representing

non-stationaryv signals and svstems. Recall that matrix representations

af time-varving svstems are themselves time-invariant, This property

simplifies the modeling and identification prohlems considerablv, n

the other hand, nndeling

time-varving,

stochastic svstems with rational
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transfer fuaction representations is exceedinglv difficult, and in our o _—
opinion, not mathematicallv mature.

The most important reason whyv this approach has been selected
relates to the structure of the estimator kernel E(',°). Nrthonormal
series expansions will be used to implement ﬁ(-,'), and the matrix
representations for £(+) can be incorporated into the structure in a
straight forward manner. The Karhunen-Loeve hasis is preferred because
it simplifies the solution for E(','), and it represents a fundamental

approach to the stochastic svstem modeling and identification nproblem.
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Chapter 4
IMPLEMENTING THE OPTIMAL STRUCTURE
LESLALY LAY
ISP
SN
4,1 Introduction ﬁx“\f\:\*,
—_— }\j\}\,\j
AT AT ATy
This chapter addresses several crucial issues which arise in the .h:.p\,, '
®
process of solving the estimator-correlator equations: . N
o
. I‘.*'
AN N
14 DRI
[ Ry(t, w) OCu, 2) du = 8(t - 2)1 (4.1-1) -:\-j:-:?_:;:;':
G AN
T ARV NN
L
P
r > ]
[ Rt u) Glu, 2) du = Ro(e, 2) (401-2) ARV
= — —_ PO S S A
T BASASSABAN,
e,
S S \'\." d
Cavataa g
L
First, it is necessarv to establish a suitable mathematical representa- O
tion for the covariance and filter kernels in order to solve Equations

(4.1-1) and (4.1-2). 1t is not clear from the definitions of RiC-y),
EV("')’ and Ry(+,°) alone how to formulate solutions for L')("') and
E(~,-). Moreover, ohtaining numerical representations which are
reasonahlv easv to manipulate in hardware is essential for adaptive
realization of the processor,

Another issue which mist be resolved is more fundamental, <o far,

we have presupposed perfect a priori knowledge of the covariance ker-

. : . . N

nels, Hnwever, this is an unreasonable assumption in most practical DRI ENON
JORCNANANS
. . . ' \‘.\‘_': ~ )
situations; therefore, it {s necessarv to estimate the kernels from ;\:\'.\'_-.:'.

»
A AN
~

arrav measurements. Kernels Rj(+,*) and _&N‘("') can be estimated ./-:ﬂr_-ﬁk\f
':_‘\?'\v:. Y

directlv from arrav data using standard adaptive techniques. n the {\-:\-.\::-_':‘
::‘..\-._.\.\.- "
, | TN

other hand, Rv('v') can not be estimated directlv from arrav data, since AL
- NN NN

MR
the siznal component {s alwavs obscured hv additive measurement noise. SO NTRTA

. .
S IENN

Y o




PSS

et s

s a s .

Lt OF A Y

[ o R E DA NEN |

S

\

s P e A e e
N A A N N T e e T
Aol . s . .

If a priori knowledge of EV("'> is unknown or incomplete, a means of
estimating it in conjunction with detection rust be found. [ncomplete
knowledge of EV(°,') represents a fundamental limitation which must be
overcome if the optimal structure is to he realized.

Third, the identification scheme for Ey(-,-) must be signal inde-
pendent. In other words, once the channel operator £(-) has been
identified based on probing signal measurements, we should be able to
use the results to estimate R,(+,+) for an arbitrarv transmitted
signal.

Finallv, a means of incorporating a priori knowledge of the
scattering channel into the detector structure is needed. For example,
we mav know that £(+) helongs to a certain class of channels character-
ized bv one or more parameters. When one or nore of these parameters
are known, or if bounds can be placed on their values, the abilitv to
incorporate this information into the processor would be useful,

We begin bv reviewing the Karhunen-lLoeve orthonormal expansion and
its relationshin to the spectral representation of linear operators.
This expansion is the fundamental tool which will be used to analvze and
implement the processor. We assert that it provides the theoretical
means to solve for the processor, yives considerable insicht into its
mathematical structure, and establishes a link between theoretical
analvsis and implementation.

ext, wve will show how these ideas can be used to solve for the
processor structure. Finding O(-,+) is straightforward. Solving

for the estimator branch is somewhat more difficult, but much more
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interesting. Once again, a Karhunen-Loeve representation provides the

)
2
i B O]

5

solution for_g(-,~), and also suggests an implementation scheme.
, . . . , . . Yl
Furthermore, it provides useful insights into the modeling and identi- "
. R . . : g
fication problem. In Section 4.6, the relationship between £(+) and the Z o,
P oy
estimator kernel is derived. Identification of £(*) is required in

el
order to calculate the conditional mean estimate. W

.
4.2 Covariance Kernel Representations )V%b£?¢.
[ ]

The key to solving Equations (4.1-1) and (4.1-2) is the spectral

¢

Y

ok

representation of covariance kernels Ry(+,*), By("')’ and Rj(+,*). ’

o

The relationship between the Karhunen-Loeve expansion of a process

l'
P s 4

1(',') and the spectral representation of its covariance kernel BX("'\

.

ALY
ORI

e

can be easily demonstrated. Recall that Ry(*,*) is defined by:

.
A
\. ‘.'.
e .l"

”,

Ry(t, u) = E{x(t, w) Eﬂ(u, w)} (4.2-1)

for £ and u within the observation interval T. Expressing Equation

(4.2-1) in terms of the Karhunen-Loeve expansions gives

R (t, u) = E{[
R

e 8

T H
xk(w) Qk(t)][zzl xl(w) gl(u)] }

k=1
e T x @ x*w) ¢ (0) ¢
LIS “k 3 K ')
= 11 Ex @ W] g, 0) g (4.2-2)
k=] 2=1
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However, the expansion coefficients are uncorrelated, therefore, :~*€§E
n

Equation (4.2-2) reduces to Lot

XA

"ﬁ( P )
%
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£

0
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.Eéﬁ
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Tx

A
’

Bx(t’ u) =
k

He-18

E{[xk(w)lz} 4, (6 g:(u) ’
1 e

(x)
k

NSRRI

Furthermore, the E{!xk(m)lz} terms correspond to the eigenvalues {A

}

PR
{l.
P

of the integral equation whose kernel is Bx(-,-). Therefore:

'~

N

I~ 8

AWF) g (1) afw) (4.2-3) by

R (t,u) =
—x »
1 S

k
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which is the spectral representation. This discussion shows how the e
uncorrelated expansion coefficients simplify the numerical representa-
tion of the covariance function, because they reduce a double sum
representation to a single sum representation. Stated another way,
the Karhunen-Loeve basis diagonalizes the matrix representation of

Bx("')‘

4.3 The Inverse Filter Branch

4.,3.1 Derivation
To illustrate how these representations are used, consider

Equation (4.1-1):

[ R (t, u) Q(u, z) du = 6(t - 2)I
TRN - -

and solve for the inverse filter g(',-).
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From (4.2-3):

T H

Ry(t, u) = ) Al((“) 4 (t) ¢, (v) (4.3-1)
k=1

We assert that the inverse operator 9(°,-) is

Qle, u) = ; 717{)‘-‘21((” g&(u) (4.3-2)

k=1 X

k

In order to prove this assertion, substitute FEquations (4.3-1) and

(4.3-2) into (4.1-1):

) H o )
[ 11 Aﬁn) 4,(6) ik(u”[gzl 8,(w) 9)(2)] du (4.3-3)

- (n)
T k=1 Xl

Both sums converge uniformly; therefore, (4.3-3) can be rearranged as

follows:

o X}E“)
[0 ] Ty 8 (0) 8w 8, (w) 8(2) du
T k=1 2=1 AQ“) S
w o x(n)
=1 1 7—k ¢, (t) f_gH(u) $,(u) du _g“(z) (4.3-4)
k=l =1 A TR L 2

Since the basis functions are orthogonal, Equation (4.3-1) reduces to

the form
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. It can be shown that (4.3-5) equals &8(t - z)I, where §(+) is the Dirac A
= R
.
e delta function. In other words, RN(-,°) and Q(*,*) are inverse kernels, ". M
— - ) 'A.‘(
X £ 0.5
and the inverse filter solution is given by (4.3-2). e |
rinf;$4’x ;
<oy
4,3,2 Discussion PRI
—_— Hprmlade
R -“-."\'("-“)"v !
Equation (4.3-2) is the solution for Q(+,+) expressed in spectral EaXadsXa X
@
, . A et IRy
form. Clearly, once the spectral representation °f.BN("') is found, :zfuf%la’
FRNN
AR RN
AT
calculating.Q(-,') is straightforward, because one only needs to j:::f:::
. , (n) . EE"‘:::’: }
calculate the reciprocals of the eigenvalues {Ak }. This simple = ?TJ—A
NI N
procedure demonstrates the usefulness of a spectral representation ::}a:;::}
AR
RN St A
RSN,
approach, N AN,
oA A Y]
RIACIN,
Although the preceding derivation for Q(+,*) is mathematically -‘-:-‘L\’
Ty SW R
; , . s .
correct, several difficulties must be resolved before considering an ’iswﬂ\
AN
T ln
, Wl
implementation based on this solution., First, we have yet to discuss ::;;&P%f
Y
how the eigenvalues and eigenfunctions used to represent Rn(°,*) are Nl
. :-l,'.ii.l.;‘.’;-
; found. Solving for them even given perfect knowledge of Ry(*,*) means e
NI
4 \. ’-"l"‘:"l ]
solving a matrix integral equation, clearly not a simple task. AT ALY
AN I Ol s
NG
Furthermore, since Ry(°*,*) is usually unknown a priori, the kernel must 'b‘ :
A ¥
' be estimated from array data. Exactly how this can be done remains to Rl
! i
be seen. Finally, the numerical issues involved with hardware ﬂéé?
[} . o’
KN
implementation must be examined. Since the calculations associated with o

the preceeding discussion are often be performed on finite-precision

fixed point hardware, robust computational algorithms ought to be used.
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8 Each of these issues will be addressed later in the dissertation.
However, for now let us assume that these difficulties can be resclved,

and turn our attention to solving for the estimator kernel E(-,-).

b
D>
4,4 The Estimator Branch
)
4,4.)1 Derivation
In order to solve Equation (4.1-2), suppose that Ry(+,*) and
)]
; Rj(+,*) can be expanded with respect to the same orthonormal basis
. {oe(*)}:
‘l
‘ NG, H R
B_y(t, w = ) 2, (6) o, (u) (4.4-1)
k=1
N R (e, w) = T AT o ey sHwy (4.4-2)
-1 k Ik <k
k=1
N The basis is not the same as used to expand g(-,-). We claim that
C G(+,+) is given by
. o 3 Y)
| H
G(t, u) = g 777 2 () 8 (W) (4.4-3)
k=1 A
k
I‘
- To prove this assertion, substitute (4.,4-2) and (4.4-3) into the left
J hand side of Equation (4.1-2):
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Both infinite series converge uniformly; therefore, (4.4-4) can be

rearranged, vielding

(y)

) © A
L H H

kzl zzl N 7 £(®) {{ ) o () au} - o) (4u4-)
L

Once again appealing to the orthogonality condition of the basis func-

tions leads to the result that (4.4-5) simplifies into

I 6(0) o) = R (e, )

(4.4-6)
k=1

which proves that Equation (4.4-3) is the solution for G(+,*).

4.4,2 Discussion
The solution for the estimator branch kernel depends on a crucial

assumption; specifically, the ability to expand the covariance kernels

Ey(-,') and Ry(+,*) with respect to the same basis {8k (<)}, This is
equivalent to simultaneously solving the equations
A g (e) = [ R (e, w) & (u) du (4.4-7)
k =k Ty ’ -k
(r) _
A ¢ (t) = [ R (t, u) & (u) du (4.4-8)
k —k T-—l —k

with the same set of orthogonal eigenfunctions {$y(*)}. From a more

abstract point of view, this is equivalent to simultaneous diagonaliza-
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i'l N.::‘
tion of two linear operators [22]). It is essential to establish the ;-. ?ﬂ‘\-"
e
N conditions when this is possible. i N
v s .ﬁ.ﬁ"
It turns out that simultaneous diagonalization is trivial if the - :,.v
: NN
N 2CALEN
: ) . -
noise covariance kernel Ry(+,*) corresponds to the covariance function T ‘-,,.::
. :':.:f::\;-
N of a white noise process. Since NI
. PN o
I
X ST RS
. . = ¢« . . . - \-.'-'_\'_\..'
: 51( ) B—y( ) +5N( ) (4.4-9) RN
3 -:_..\-.,,:.,:._ 3
BSOS
SURT AN RS,
. l'-'\ L '\t
1f 5:‘.1\5,1_'_"
e
9 I A
b TN .r,\‘.'
) = - -1 el
_I_{_N(t, u) 6(t —ul)l (4.4-19) R
: .'_'.'_'.-:.:‘-'
‘ Cod i u s
; ) . el
then by substituting Equations (4.4~9) and (4.4-10) into Equation °®
3 L R
3 (4.4-8), it is clear that {¢x(°*)} solves both relations. In other "_;
S . S
F . : . . . A
) words, if the noise process n(+,+) is spatially and temporally white, e
) . ] ) SR,
simultaneous diagonalization of Rl(-,') and R (+,*) is straightforward. ®
K Y ~$"-'f'-.- .r—
) However, making a white noise assumption as a part of the problem :-'{4-::«-:'_':\
‘ s Ns
'’ :ff’_e,:atit
‘ formulation is unrealistic., Therefore, it is necessary to establish ?,:-,:.,;-_
M NTNY
the conditions when simultaneous diagonalization is possible given a ®
! NS LN
- | P
: colored noise process n(-,+). NINODY:
' TN
) Simultaneous diagonalization can be achieved by decorrelating the "‘.-'_: :.'-:.p
NN I
Fourier coefficients of n(+*,*). The various relations among the )
= “
: covariance and filter operators 1is most easily seen with the £ repre- . "
" W \:‘-
[s . Y
. sentations for the various signals and operators involved. 1In terms of ;'-'_'..:\:.‘-:.
Fourier series representations, the measurement model
\d
5
» r(t,w) = £s(t) + n(t,w)
)
\J
)
]
\
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is equivalent to
H{w) = v(w) + n(w) (4.4-113

where the coefficients r(+), y(+), and n(+) are in column vector form.

In terms of matrix representations, the relation
R (.’.) =§y(.,.) +-EN(.’.)

~—1

is equivalent to

Define a matrix filter C operating on 2(') such that

n''=Cn

E(n'(n")f} = 1

The structure of C depends on how the filter operator is implemented.
For example, if Gram-Schmidt orthogonalization of the Fourier
coefficient vector n(+) is performed, C is an upper or lower triangular
matrix.

The decorrelation can be performed by premultiplyinglz(') by C:

C r(w) = C y(w) + C n(w)

Clearly, C alters the relation among R Ev’ and EN in Equation

1)
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[] ] [ l—l ] 1 '

R, R =R R R =R R

-l=y =v-=l—-y -y =-y-Ii
which shows that the modified operators 5; and 5; are simultaneously
diagonalizable. Moreover, since 5; and 5; are positive definite
Hermitian forms, they can be diagonalized into spectral form with a
unique unitary operator E'. The operator 2' diagonalizes both 3; and 3;

1]

simultaneously, since El

is the sum of B; and an identitv operator.

Therefore, in matrix form:

¢'=rR'@®RH P =u At uHupt g
- U' Av A_l +H

1]

u' diag[Aiy')/A(lr') S|

The spectral form is obtained by decorrelating n(+) when the noise

process 1s colored.

4,5 The Structure of G(+,*)

The solution for G(+,*) is in the elegant form of a spectral repre-
sentation parameterized by the eigenvalues of_gl(-,~) and By(~,°). But
its significance goes beyond an abstract theoretical result of little or
no practical interest, On the contrary, not only does this mathematical
structure give considerable insight into the relationships among

detection, estimation, modeling, and system identification, it 1s the
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G(+,*) adaptively. Recall that the {X

80
kev to practical implementation as well, Whv do we make these
assertions?
First, evaluating the conditional mean estimate from arrav measure-
ments is simple. This can be seen clearly bv expanding G(+,+) in terms

of Equation (4.,4-3):

(y)
Ak

{ G(t, v r(u, ) du = { {E 3 £.(6) 8] £y, W) du
Ak

‘<
~r

A(y)

>

X1~

o
o~ x o~

ia

~|

i

|

_~

X
11

k
-;(—r-)— rk(w) ik(t)
k

The coefficients {ry(+)} are obtained from the array measurements by an
inner product operation. Calculating the conditional mean is straight-
forward because each coefficient is multiplied bv a real number. This
operation is analogous to postmultiplying an N x ] vector of coeffi~
cients bv an N x N diagonal matrix where only N multiples are needed.
The preceding remarks suggest this structure reduces computational

complexity.

(r)

K } and {A(y)} give insight into the channel

The parameters {X K
operator identification problem, and suggest a method of obtaining

(r)
k

the expansion coefficients of E("') given Hj:

} terms are the variances of

R B, ()% (4.5-1)

(v)

The {Kk

} parameters are the variances of the signal process

coefficients:
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(v)
xk

AR (4.5-2)

Therefore, the spectral representation of E(-,°) transforms the covar-
iance kernel estimation problem into a parameter estimation problem.

The significance of the parameters is obvious from Equations (4.5~1) and
(4.5-2), and in addition, these definitions suggest how they can be

(r)

obtained from arrav data. The {xk } parameters can be estimated by
performing the inner product operation < r, ¢y >, taking the magnitude
squared of the result, and averaging over L independent measurements,

On the other hand, obtaining the {Aﬁy)} parameters is not as straight-
forward, since uncorrupted measurements of the signal process y(+,+) are
not available. These parameters represent a priori knowledge which is
needed to calculate the conditional mean. If they are unknown, another
estimation procedure must bhe found. This problem will be examined
further in Chapter 6.

The other issue that must be addressed is how the parameters {Aiy)}

relate to the channel operator £(+). This relationship will be studied

in the next section.

4,6 Relating £(+) to the Unavailable Eigenvalues

The relationship between {Aiy)} parameters and £(+) is obtained in

terms of the matrix representations for EV(-,-) and £(+):

R, = E(L() P L") (4.6-1)

L(+) is the matrix representation of £(+), and P =‘§_§H, where s is the
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vector of Fourier series expansion coefficients of the probing signal,

If the Karhunen-Loeve representation of v(+,*) is used, then

)y (4.6-2)

By = diag[kl )

which are the unavailable parameters in the estimator structure. The

ith element in Ey is:

Elly, @17 =2 - DL et af ) s () (463)

This showe how the {A(y)} terms are related to the second order statis-

k

tics of the model parameters. Further insight is gained by evaluating

the cross—-correlations:

* - * -
E{lim(w) zin(w)} = E{< 20, 4, > < o, 0, >*3 (4.6-4)

In terms of a random Green's function representation for £(-),
E(< 20 , ¢, > < g6, ¢, >*)
= E(Jf n(e, 7, w) ¢ (1) 65() dt dr][ff hu, v, w) ¢_(v) o5(u) du dv]¥)
= [J]] E(h(e, 1, w) 0¥Cu, v, @)} 67(E) 6. (u) ¢ (1) ¢7(v) dt du dt dv

= [[[f 6(t, 1, u, V) ¢I(c) 9, (W) ¢ (1) ¢§(v) dt du dt dv (4.6~5)
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The expectation of the product h(t, 1, w) h*(u, vV, w) appears quite

often in the stochastic system theory literature, and is important
enough to warrant a name. G{(*,*,*,*) is called the stochastic Green's
function of kernel h(+,+,*) [30]. It is a deterministic integral kernel
which relates the statistical measures of the system output to those of
its input. 1In this context, G(+*,*,*,*) relates the second order statis-
tics of X("') to the properties of probing signal s(-+).

The four-fold integral (4.6-5) is the tensor representation of
G(e,*,*,*,) with respect to {¢,(*)}. Therefore, Equation (4.6-5) can
be interpreted as a parameterization of G(+,*,*,*) with respect to the
Karhunen-Loeve basis {o(*)}.

This result is significant for several reasons. First, it nails
down the meaning of the somewhat nebulous expression, "Identification of
the channel operator £(*)."” The cross-correlations of the matrix
representation of £(*) can be interpreted as a parameterization of the
verv important stochastic Green's function G(*,*,*,*). Estimating the
numerical values of thesa2 parameters represents a systematic approach to
stochastic operator identification. Furthermore, this approach allows a
priori knowledge of the statistical properties of £(*) to be incorpara-
ted into the estimator-correlator structure. For example, it nmav ™
known that £(°*) belongs to a certain class of channels character:y:.
certain forms of G(*,*,*,*) or their mathematical eauivale=t.,
scattering function representations [5]. More orfte: o oo

functions are parameterized by one or more variat.e -

particular channel under exanination. 1+
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can be determined a priori, or if it is possible to bound their values

based on environmental constraints, this knowledge can be incorporated
into the detector through Equation (4.6=5). Unfortunately, this
interesting problem is beyond the scope of this study, and it is left

as an issue which deserves further research.

4,7 Conclusions

The solutions for Q(+,*) and G(+,*) were derived and studied in
detail. Spectral representations for the covariance and matrix filter
kernels were used to obtain series solutions for the processor equa-
tions. We pointed out the relationship between these representations

) and the Karhunen-Loeve expansion. In addition, it was seen that this

approach sheds light onto several relevant theoretical issues and sug-
gests how to implement the optimal processor.

The second order statistical properties of £(+) are related to the

NS

gy
{Aiy)} parameters. In principle, the channel identification process ﬁ}}iﬁjNJ

NN
could be developed based on this relationship. However, this method has Sy

o
?{

a fundamental limitation. The purpose of this study is to develop a
channel identification scheme which can be incorporated into a practical
array processor. Simplicity is of the essence in these applications,
and clearly, the relationship between Ey(°") and £(+) presented in the
last section is much too complicated even if By is diagonal. A more

compact representation for £(*) is required. This problem will be

examined in the next chapter.
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Chapter 5

A CANONICAL EXPANSION APPROACH TO STOCHASTIC
SYSTEM MODELING AND IDENTIFICATION
5.1 Introduction
This chapter examines the modeling and identification problem in
further detail. 1In particular, we seek a more compact representation
for £(¢) in order to simplify Equation (4.6-3). Clearly, simplifying qhg
N

this expression is essential if the estimator~correlator is to be
implemented. Of course, the requirements which were spelled out at the
beginning of Chapter 4 must still be met. The representation for £(¢)
must be suitable for digital signal processing applications. Also,

the channel identification should be signal independent., Once £(¢) is
identified using a probing signal s(+), we should be able to estimate
the statistical measures of y(+,*) for any arbitrary transmitted
signal. Finally, the representation should allow a priori knowledge of
£(*) to be incorporated into the detector structure.

The derivation is presented in the next section. The solution
immediately leads to a convenient series representation for £(*)
developed in Section 5.3. These results are new and represent an
original contribution to stochastic system theory. In addition, they
provide interesting insights into several classical system identifica-
tion theory issues. Using this representation, we obtain a very simple
expression equivalent to Equation (4.6-3). It establishes an interes-
ting connection among detection theory, estimation theory, and sto-

chastic system identification theory which is examined in Section 5.5.
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5.2 Derivation

In order for the results to be as general as possible, let us pose
the modeling and identification problem in terms of a random Green's
function representation for £(+), an input process x(*,+), and an output
process y(+,¢):

y(t, ) = &x(t, w) = [ h(t, 1, w) x(1, w) dr (5.2-1)
T

x(+,*) 1s a stochastic or deterministic probing signal whose properties
are known and under our control. The final goal is to identify statis-
tical measures of h(+,+,*) in terms of the known properties of x(+,:)
and the measurable properties of y(*,*). We shall assume zero initial
conditions, which is reasonable in the context of stochastic trans-
mission channel identification.

Canonical expansions of the input and output covariance kernels
will be used to identify the stochastic system. Let {¢k(')} be an

orthonormal basis simultaneously solving the following expressions:

(y) _ -
A ¢k(t) = { Ry(t, tl) ¢, (t)) de, (5.2-2)

(x) - -
A e (0) 4 R (t, t,) ¢, (t,) dt, (5.2-3)

In general, it is difficult to find simultaneous solutions to these
eigenvalue equations. One approach is based on a generalized eigenvalue
decomposition of Ry(-,-) and Ryx(°*,*) which will be described in detail

later in the dissertation. There are numerically robust algorithms
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87
available for solving the factorization problem. Furthermore, in a
number of meaningful special cases, simultaneous solutions to Equations
(5.2-2) and (5.2-3) exist. TFor example, if the input process x(+,*) is
wide sense stationary, and the random Green's function h(e+,-,*) is
time-invariant, then complex exponentials satisfy the equations. 1In
addition, if either the input or output process can be approximated by a
white noise process, then the problem reduces to solving only one of the
eigenvalue equations. This approximation is reasonable since the
probing signal s(+) is under our control. Good probing signal design
. can be exploited to simplify the representation and identification of
().

Next, recall that the system output y(*,") is given by

y(t, w) = [ h(t, 1, w) x(1, w) dt
T
We shall make the physicallv realistic assumption that h(+,+,+) and
x(*,*) are uncorrelated. In terms of Equation (5.2~1), the system
output covariance kernel Ry(°,') is:
R (t,, t,)) = E{[ [ h(t,, 1, w) x(t, w) dt][ [ h(t,, s, w) x(s, w) ds]*}
vl 2 T 1 T 2

Writing Ry(',') in terms of expectations over the individual ensembles

of h(e,*,*) and x(+,*) gives:

i Ry(tl’ tz) = Eh{[ { 4 h(tl,r,w)h*(tz,s,w) Ex{x(tl, m)x*(tz, w)} dt ds}
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But

E{x(1, w) x*(s, w)} R (t, s) = X A (%) ¢k(T) ¢k(s)

k=] k

and, of course,

7 a0 4 (e) ekt
N T S S A “ f. .
.&:w

@
Therefore, AN

s
), 4
® t“:':' :.

(y) . s
kil N e a(ey) ]

t,)

Ry(t1 9

)

Ry(tl, t2

? = Eh{ kZ Aﬁx) f h(tl, T, w) 9 (t) dt f n* (tz, s, w) ¢k(s) ds}
=1 T (5.2-4)

Equating the kth terms in the expansion yilelds:

(S

I "
{ h(tl’ T, w) ¢k(T) dt = hk(w) ¢k(t1) (5.2-5) Ll

" c"

~|l. 'l' 'l

"-.:-
* * * *

4 h (tz, s, w) ¢k(s) ds hk(w) ¢k(t2)

Notice that the two preceding relationships are eigenvalue equations

for h(+,+,*), which implies that in essence, a Karhunen-Loeve expansion

of h(+,*,*) is being performed. Substituting these relationships into

Equation (5.2-4) and equating the k-th expansion coefficients gives:
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\ RN

i} P

(y) * ...:':‘.I:"'i‘

Ry(tl, t,) = ) AT e (e 9 () S
k=l R

Wt !l.<

- s (x) * *
kgl A E {hk(w) hk(m)} ¢k(t1) ¢k(t2)

o
- (x) 2 * _
I A7 Eh @[} e () ¢ (t)) (5.2~6)
k=1
This solves the identification problem, The eigenvalues “l(cY)} are
known or can be estimated from the output measurements y(+,*). Further-
more, the eigenvalues {A‘((X)} are known because the process x(+,*) is A Y
'O.E't.::\‘::l‘:
under our control. Therefore: OGRS

:-’..v;';‘ '.‘. F ..’
2 ) _ (y),, (%) -"“'::‘?::5: ’
= = - VR L YL
E{|hk(m)i b= AN (5.2-7) ;§§:§:i:$‘
'Zh'fi":‘{"w

»

for k = 1,2,... This procedure identifies the second order statistics L]

of the random Green's function h(e-,+,). - :

o )
H3y
5.3 Representation of the Random Green's Function !*53}"

Let us show how a convenient representation of h(+,*,*) can be >,
found in terms of the basis {¢x(*)} and the coefficients {hy(*)} ! E‘ﬁ:&"ﬁ
described in the previous section. "&;*;

Any bounded function defined on the product space T x T x  can be ."'?‘:;'\f":"

ST GYeY
" ‘) ‘
expanded as follows {22]: e Ny

h(t, T, w) = § 7§ h
=] j=1 17

(w) ¢, () ¢;(r) (5.3-1) -‘;‘"“ e

ST -‘\\~*\\\\-'\--‘\f.~‘::
.J' ™ e . - " LJ v
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where

— * -
hij(w) = £ { h(t, 1, w) ¢7(t) ¢j(1) dt dr (5.3-2)

and the functions

5 *
°1j(t’ T) = ¢i(t) ¢j(r)

form an orthonormal basis for the product space T x T. The coefficients
{hij(')} are the matrix representation of the random Green's function
h(+,*,*), or from a more abstract point of view, the matrix representa-
tion of stochastic operator £(¢).

From Equation (5.2-5):

{h(t) T, w) ¢J(T) dt = hJ(w) ¢J(t)

which implies that

W) 8, (5.3-3)

3

—-— * =
hij(w) = { hj(w) ¢j(c) ¢5(t) dt = h p

This result shows that the matrix representation of £(+) is diagonalized
provided the covariance functions of x(°*,*) and y(+,*) are simultan-

eously diagonalizable. Therefore, the random Green's function h(*,*,*)

can be represented by a single sum series:

h(t, T, ) = ] h (@) 6 (t) 65(1) (5.3-4)
k=1
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Estimating the means and variances of parameters {hy(+)} is equivalent

to 1dentifying the mean and covariance functions of h(<,+,¢).
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5.4 Generalization to the Vector Case

The previous results can be generalized to vector processes.

Suppose x(+,*) and y(+,+) are N x 1 stochastic processes. The a
— *l

covariance kernel of y(+,*) is an N x N matrix: A I

H
R(e, ) = ] W g ) 6 () (5.4-1) M

(v)

where the eigenvalues {Ak

} and eigenfunctions {¢, (+)} are solutions ALY
y
1
5

to the equation:

o
Aéy) Ek(y) = [ R (t, u) gk(u) du (5.4-2) :t$,FfN;h'

wls Corln
Ty AR,

-
by
K J
5

for k = 1,2,... Assuming simultaneous diagonalization of Ry(*,*)

and By(-,-), the eigenvalues {Xix)} and {Aiy)} are related as before:
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xf(-") - E{|hk(w)|2}/xf(") (5.4-3)
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for all k, and the matrix random Green's function H(-,+,+) has the

representation:

HCE, T, @) = T by () 8, (€) g1 (t) (5.4-4) (5
k=1
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The second scheme to be considered is based on the representations

for _)5(-,-) and y(+,+) derived in Section 3.4, where

© N
= ( -
x(t, w) izl jzl xij(w) ¢, () 2 (5.4-5)
© N
y(t, w) = izl jzl v ¢ C0) e, (5.4-6)

Assuming the {yjj(*)} coefficients are uncorrelated, then

© N
= (y) * H -
R (t, w) iél jzl My 0g(0) eg(w) e e (5.4-7)
But for a fixed 1,
Yooy om (y)
jzl Ai§ e; gy = U A7 U (5.4-8)

where the sum is written in matrix notation:

H(i) = [El see EN] (5-["'9)
(y) _ . (y) (y)
A = dlag[xu cee AN ] (5.4-10)

Substituting (5.4-8) into (5.4~7) leads to the following simplification

- () gHepy o* )
R (e, w) 121 ¢, () UGi) A7 U7 #7(w) (5.4-11)

which will be used in the subsequent derivation.
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For vector processes:

y(t, w) = [ H(t, 1, o) x(1, w) dt
T

(5.4-12)
and

R (t, uw) = E{[[ H(t, 1, w) R_(1, V) Bl(u, v, w) dt dv} (5.4-13)

where an argument analogous to that in Section 5.3 is used. Again, it

is assumed that BX("') and_Ey(',') can be expressed in the representa-

tion (5.4-11) with respect to the same basis (gij(')}. Then
= W . H
EX(T, v) = izl jzl Aij ¢i(r) ¢i(v) fﬁ f%

)

o, (0 uw) A% ) ¢F ) (5.4-14)

Substituting (5.4-11) into (5.4-15) and rearranging leads to the

following:

[/ HCe, 1,008, () ar]aA[f HGu,v,0) U8, (vav]H)

=1 T T

| ~. 8

R (t,u) = E_{
2y H ;

(5.4-15)

Equating the kth terms in (5.4-13) and (5.4-14) implies equality only if

{ H(t, 1, w) U(k) ¢k(r) dr = ¢, (t) U(k) diag[hlk(w) e hNk(w)J
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Then
(y) H * - (h) ,(x) H *
¢k(t)-2(k) Ak U (k) ¢k(u) = ¢k(t).g(k).ﬂk Ak U (k) ¢k(U)
for all k, and
(h) _ ,(y) ,(x)-1 -
Each matrix in Equation (5.4-16) is diagonal; therefore, the identifi-
cation is easy to perform. Moreover, the representation of H(+,*,*)
with respect to igij(')} reduces to:
« N H
H(t, 7, w) = J § h, . (0) ¢.(t) ¢¥(1) e, e, (5.4-17)
- i=1 j=1 1j i i =i =]

which is the matrix equivalent of (5.3-4).

5.5 Discussion

The results from Sections 5.2 through 5.4 show how Karhunen-Loeve
expansions can be applied to the system modeling and identification
problem. Expanding the random Green's function in terms of the
Karhunen~Loeve basis is a fundamental approach to stochastic system
modeling. It simplifies the identification problem, and gives a
representation for £(+¢) which can easily be incorporated into the
estimator-correlator structure., One can interpret the results as é

transformation of the matrix parameters from an arbitrary basis into

the Karhunen-Loeve basis, where the identification is easier to perform,
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The results provide several interesting new insights into the
stochastic system identification problem. Applying Equation (5.2-7) to
the original problem of simplifying Equation (4.,6-3) yields

(s)

A£Y) = E{llk(w)lz} A

(5.5-1)

where {Ais)} are the eigenvalues of P. This result is deceptively
simple looking; actually, it ties together ideas from several

disciplines. The representation for £(°+) was derived in order to

(s)

simplify the relationship between the {X£Y)} terms and the {Ak

} terms,
in other words, to simplify the channel identification problem. The
{Aﬁy)} terms are needed to calculate the minimum mean-square estimate of
the channel output used to compute the likelihood ratio. Of course, the
key to obtaining (5.5-1) is simultaneous diagonalization of P and Ry,
which in this context depends on proper design of the probing signal
s(*), or in the case of more general signals, the use of numerically
robust algorithms solving a generalized eigenvalue problem. The repre-
sentation for £(+) meets the requirements defined at the beginning of
the chapter. It is well-suited for digital processing of the array
data, and it allows a priori knowledge of the scattering channel to be
incorporated irto the estimator-correlator structure.

Equation (5.5-1) also gives new insight into the meaning of the
phrase, "For system identification, a probing signal must be suffici-
ently rich [37]) [38]." 1In terms of Equation (5.5-1), it means that for
, the probing signal eigenvalue A

must be large

each eigenvalue Aiy)

(s)
k

enough so that numerical errors do not occur while performing the
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Chapter 6

NUMERICAL ISSUES

6.1 Introduction

At this point in the dissertation, the mathematical derivations
needed to solve for the processor kernels have been completed. We have
asserted that orthonormal representations of the covariance kernels, the
processor kernels, and stochastic operator £(+) can be used to obtain
the solutions. However, several outstanding issues still must be
resolved before the optimal structure can actually be implemented. 1In
particular, we have yet to show how the Karhunen-Loeve eigenfunctions
and eigenvalues can be calculated from array measurements. This problem
must be examined in detail if we are to go beyond formal manipulations
of infinite series to a working system. In conjunction with this issue,
the numerical difficulties inherent in any adaptive signal processing
svstem must be overcome. How do numerical difficulties arise?

The answer to this question relates to the nature of adaptive
systems. Recall that an adaptive system is a learning or self-
optimizing machine which adjusts its response according to the statis-
tical properties of its surroundings [40]. This is where numerical
difficulties can occur. For example, second order statistical informa-
tion is usually estimated by post-multiplying a data matrix by its
Hermitian transpose, which causes loss of numerical precision when the

arithmetic operations are carried out on finite-precision hardware. The
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ability to implement an equivalent adaptive processor in hardware
without performing the squaring operation is very desirable.

Since a priori knowledge of the covariance kernels is incomplete,
they must be estimated from array data. Therefore, the numerical
problems as described above must be taken into account while designing
the processor.

The purpose of this chapter 1s to solve the computational and
adaptive implementation problems required to construct the optimal pro-
cessor. We begin by returning to the inverse noise covariance kernel
Q(+,*), and suggest an approach for computing the Karhunen-Loeve basis.
The solution requires calculating matrix products, an operation which
should be avoided whenever possible. The singular value decomposition
can be used to solve an equivalent estimation problem, bypassing the
squaring step altogether.

Next, we shall turn our attention to the estimator branch G(+,*).
The solution is based on simultaneous diagonalization of By(~,-) and
51(',-) using generalized eigenvalue decomposition. Once more, a matrix
squaring operation appears in the solution formulation. Can an equiv-
alent processing system be realized without squaring?

The answer to this important question is yes, and the processing is
based on a matrix decomposition which is just now appearing in the
numerical signal processing literature [41]. It is called the CS

(cosine-sine) decomposition, and it provides the means to compute G(+,*)

directly from array data, making the matrix multiplication unnecessary.
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! Furthermore, it will be proved that this solution is numerically t-'::-\:\:' ;:
o ": EACAY
v e
:' equivalent to decorrelating the expansion coefficients of n(+,*) fol- t*;:_::é',gi
lowed by a Karhunen-Loeve transformation.
t
1)
: Finally, we will show how to obtain the data which are needed to
'
p estimate Ry(*,*), Rj(+,*), and Ey(':')' It will be seen that Ry(-,*)
. must be obtained at a high signal-to~noise ratio, as this step
[
‘: represents system identification.
D)
\
)
4
’ 6.2 The Inverse Noise Covariance Kernel
¢
$ 6.2.1 Example
' The computational issues involved with implementation can be
h
- illustrated by considering the following example. Suppose that 2(°,°)
: is a wide-sense stationary, periodic stochastic process. Find the '_""
Ei Karhunen-Loeve basis and QCe,*). :'.'J', L
: bm."'.":.{txlma,
- We begin by selecting a basis in the form derived in Section 3.4: ®
- A .\: T
x ,\.‘:-.'.\_":\g
B = - -\. N
re f_ij(t) ¢, (t) uy (6.2-1) -"".):‘:‘i‘t:
N N,
\ PN
.y ﬁ-\“-\lq
. for j = 1,2..., M, where M is the number of sensors, and for all i, q;;_.::;;» 5
B’ NN
{ n(+,*) can be expanded as follows: :'-f.\'-'-,-’-:-"{
-_— AW o)
% AN
el
_ w N NN SV I
3 alt,w) = _Z nij(w) ¢, (1) Y o
b {=—0 j=1 i
b UATAL N
& A
B Jaa
i and Q(+,+) has the representation: {:\ ‘:\
[} - (S 3 ‘-.-..4
@
® NPT
> ° ¥ R H PSRN
Y olt,u) = § 1 —— ¢.(t) ¢, (u) u, u, (6.2-2) n*;-“:-"m"ﬁ
( - (n) "1 i —j ~—j AGANS
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The basis elements must be orthogonal:
Ly By” = Sk S5
and the expansion coefficients must be uncorrelated:
En,, (@) ¥ (@} =2 5
] ij ke ij ik “jL
p
These identities suggest that we attempt to solve the integral equation
Amn ¢ (t) = { EN(t,s) gmn(s) ds (6.2-3)
for all m, and for n = 1,..., M. Substituting Equation (6.2-1) into
(6.2~3) gives:
‘ —
! )\mn 4)m-l-*-n - {-EN(t’s) ¢m(s) L ds
N
? ~ »
LSRR LN
) . . \*\ \"-\
: Assuming n(+,*) is periodic with T = 25, the integral equation becomes e {){ﬁ%
. — \-*-r a._a
\\\'(:&'::'
' RN AN,
Ll o
= - - Y
Ao e (8) u _I Ry(t) ¢ (£-1) u_ dr (6.2-4) _.;:{_‘m_\:_:&.
.f,\'_}.‘_'_-.‘:-.‘*
f .-.'-h \‘_\}.\j
N AN
N The proper choice for the scalar basis is the complex exponentials: LS AU \%
' ¢m(t) = exp{jmt}
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For a given m, Equation (6.2-4) becomes:

b

Ry() ey dr = s (m) u

mor-n n

where Sy(+) is the power spectral density matrix of n(-,*),

equal to one. Therefore, the equation

u S..(m)u
mmrTm —N -

must be solved for eigenvalues {Apn}

the Karhunen-Loeve basis. Actually, since the eigenvectors

also a function of m, Equation (6.2-5) should be:
u =8 (m) u
mn —un —N —mn
S0lving Equation (6.2-6) provides the Karhunen-Loeve basis.
the wide-sense stationary, periodic signal assumptions were
for purposes of illustration.

The preceding results can be

ized to nonstationary processes as well.

6.2.2 A Possible Processing Scheme

and wg is

(6.2-5)

and eigenvectors {up} to obtain

{upn} are

(6.2-6)

0f course,

only made

general-

The results from Section 6.2.1 suggest a processing scheme illus-

trated in Figure 6-1. Since the scalar basis is the set of

complex

exponentials, the first step is to compute the discrete Fourier trans-

form of the array data given noise alone.

Next, the power spectral

density matrix at each harmonic mwgn is estimated by averaging over the

array data.

R
v ‘.* W o

Finally, the vector basis functions are calculated by
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performing an eigenvalue decompcsition of each estimated power spectral \;ﬁ" ¢

density matrix., L
N eGeh Ot
: NS A0NRX

While this sequence of steps is mathematically correct, it is not *ﬂﬂ?{3$*$
AL TR

M A

PGA LN g

advisable for the reasons given in Section 6.1 [42]. The power spectral A S N

density matrix estimation involves a matrix squaring operation prior to
the eigenvalue decomposition step. Since this reduces the precision of v..
the final answer, an equivalent procedure avoiding this step is needed. dhﬂ\i{'

This is where the singular value decomposition shall be introduced. ,

LR B |
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6.2.3 Applying the Singular Value Decomposition e
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The loss of numerical precision can be avoided if the singular

A
;.n‘

o~

P el

value decomposition (SVD) [39] is used instead of eigenvalue decomposi-
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calculate the discrete Fourier transform as before. Next, consider a
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A=y (6.2-8) o

where U is an M x M unitary matrix, V is an L x L unitary matrix, and I
1s a diagonal matrix whose elements are the singular values of A, A can

be written in terms of the singular values {0y} and the columns of U and

W, g fo of g "-\..5’\.-. "‘.f"" . d'~f
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: H
A=) o, u v (6.2~9)

r is the number of non-zero singular values of A, which is also the rank
of A. Furthermore, the following relationships between the columns of

U, columns of V, and A are met:
A up = op v (6.2-11)

An eigenvectnr-eigenvalue relationship is found by eliminating v from

Equations (6.2-10) and (6.2-11):

H 2

u
—~ —m
H 2
A A is a Hermitian matrix, and O = Xm.

The point of this discussion is that the eigenvalue decomposition
can be calculated by solving an equivalent singular value decomposition.

The power spectral density matrix estimates are given in the form
ACl) AR(K) (6.2-13)

at each frequen-y k., It is clear from (6.2-10) and (6.2-12) that the
eigenvectors of this product are the same as the left singular vectors
of A(k). Therefore, the eigenvectors and eigenvalues of (6.2-13) can be
obtained directly from transformed array data by calculating a singular

value decomposition. The procedure is illustrated in Figure 6-2,
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The previous discussion suggests how the results in Section 2.5 'N,\i\;u;\

can be implemented adaptively. Calculating the Karhunen-Loeve basis and ?,:

Inae
DN Sl
value decomposition of the Fourier series coefficient covariance matrix. PR *f“

expansion coefficients from an arbitrary expansion requires an eigen- DN ,
\ ]

o',
L%

oo

If this matrix is unknown, it can be estimated from array data:

o

X
=

2

=
i

,5.51,‘, 'ﬂr »
¥
v
X

where A 15 a data matrix of Fourier coefficients computed over L
— -l- *‘1 n .

) uw X

measurements of the array output. Rather than computing the eigenvalue 9#?0’ N
> Pl

R ' . . JN*\Fﬂﬁt.V

decomposition of Ex’ a singular value decomposition of A is calculated.

The left singular vector matrix U represents the linear transformation o

needed to calculate the Karhunen-Loeve basis and series coefficients.
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6.3.2 Basic Numerical Approach N At

\
N I
\ "'3\«:
In Section 4.4 we demonstrated how the solution for G(-,*) was PN RN
[ ]
constructed by data prewhitening followed by an eigenvalue decomposi- _._"-:{"-“‘::
A A
' ' ORI, -
tion of the modified covariance kernels B_I(-,-) and _gy(-,-). Here, the ;\::-\~i_.-"},,~"
P
AYTRARLY
problem will be approached from a different perspective. What we seek "SJ":.V'-"
]
is a linear transformation which diagonalizes Rj(+,*) and g_y(°,') ’,x\,,-_‘_«.'_-
R
RUANURERAS
directly, skipping the prewhitening step entirely. 1In terms of matrix .:-';:'.-_‘f\\f-:'p:
AEREA A
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representations, this problem can be posed as follows. Find a linear AP W
.
transformation X such that Rj and Ry are diagonalized simultaneously V*-t:}‘.;?:;'{;
' e ]
] LE N ¢
: ALY
.{'\"\*\ A1
| xH Ry X = diagla] a2 ... ] (6.3-2) Aot
» - =i & -ﬁ_.)' o
] N
| [
_X_H _Ey 5 = diag[BI 82 s e ] (6.3_3)

Provided a non-singular X exists, then:
Ry = x7H Aq x71

where the -H notation denotes inversion followed by Hermitian transpose,

and similarly,

A

LA
clea
o

.'.

%
J

v
2
PR
»

.
ety
2.
A 5 Y-

a 'D"l

Ry = X% Ag x~1

‘.
X
AN

e
Y

z'

l.-
|

Since G is given by:

2
S

R
- 7y

l_ =
PR

&

14

[ XA

A &

in terms of X, Aq, and Ag, G is written:

P
A h Y
<
oA,
Py

r
s
»

S
AN
! l.
- o

b9
%
S

[

. .
P
P

’.
.. "

s,

i

» 's
A

v
'
S %

o
"-
2,
v

A
p)
»

‘e "4 T
P
v
L)
n""
i

[l

Py
I'd

2
<
Mo
*

hl

4
!
\
D
E T3 .\': o~
3
E
-.




DY T O R Y I A T O O O T N O Y U O T TS D O O DR R Rotal tal Sl dap S0 Lag bin an 0oy day g
108 A
"W

=_>5'H diag(,/a) «.. ] X (6.3-4) Z\ﬁp-“'

The necessary and sufficient conditions for simultaneous diagonali-
zation of two positive definite, Hermitian matrices are well under-
stood [43]. It can be shown that there exists a non-singular, unique R

matrix X which diagonalizes R} and Ry. Furthermore, the computational ALY
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aspects of this problem have been studied extensively by numerical
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analysts, In this field, the problem is called the generalized eigen-
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value problem of the matrix pencil R} - A Ry [39]. The fact that the
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can be demonstrated by rewriting Equations (6.3~2) and (6.3-3):
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Rearranging these relations leads to the following:

Ry 2k = (ok/Bk) Ry Xk = X Ry xk
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which shows that the rows of X are the generalized eigenvectors of R)

“aTa ¥ €
i

LY
B

Ly

5

and Ry, and that the {ax/Bk} terms are the generalized eigenvalues of Rp

and _Ry. « N ¥ :f'\.
The preceding discussion suggests that G(*,*) can be calculated AN

directly by solving a generalized eigenvector problem, where E(',') is
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C can be written in upper triangular form, and given a positive
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the covariance kernels of .E'(') and l'(') are:

N

R = E{r'(w) t'Mw)} =cRr c =cr c+1=Rr"+1
K Both Rl' and 3}: are positive definite and Hermitian, their eigenvectors
. 2
)
' are the same, and they are unique:
R =uA o (6.3-6)
-F'J' &,
' , H PESIDEIN
X R =UA U (6.3-7) co
-y =y - ROAANS
;. ¢
Rearranging Equations (6.3-6) and (6.3-7) vields:
" '
‘ o' R U = diagAT L. ]
# - =1 1
H X !
- U 5' u = dlaglxiy ) eee ]
3 Y
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S
o But in terms of R), Ry, and C:
»
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i or M= aarndtY L R
l‘ ‘e
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s, H H (y") ’
U cR C' U =diag(r,’ 7 ... ) N
o - -y - = 1 NEROSENG!
o v .‘_'\:,‘.“
' RGN
o The matrices U and C are unique, therefore: e
W = -= SR SER
X
XH=uic=-qR (6.3-8)
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6.3.3 Implementing the Estimator ®ranch with the CS Decomposition .

which equates the eigenvectors of R

We have seen how to implement the estimator branch using the gener-

s
4

alized eigenvalue decomposition, and in principle, this part of the pro-

blem is solved. In this section, we consider how implementation can be RN %
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accomplished in a numerically robust fashion, oLl

Maximum likelihood estimates for R) and Ry can be constructed by it

averaging over independent array measurements. The procedure begins by S,

calculating the appropriate Fourier series expansion coefficients:
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R =
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(6.3-9)

-ﬂ‘

i The signal alone covariance kernel must also be estimated from
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enough, the array measurements can be made close to signal alone:

r(w) = y(w) + n(w) = y(w)
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Finally, the generalized eigenvectors and eigenvalues can be calculated

)

by solving the system
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community [41] [45)]. The solution uses the CS decomposition, which
will be described in the next section.
6.3.4 Solution
The CS (cosine-sine) matrix decomposition arises naturally in the
context of the éﬂ A~ A EB.E generalized eigenvalue problem. This
system can be solved by CS decomposition directly in terms of A and B.
Suppose
e —~ -
Al R (6.3-12)
B Q -
-——— —-—2—
is the OR decomposition of A over B. Writing 0; and Q) in terms of
their singular value decompositions gives
Q=0cy (6.3-13)
Qo =Uzy 8V (6.3-14)
where
C = diag(cy)
and

S = diag(sy)
The {ci} and {sj} terms are non-negative, Uj, U2, and V are unitary, and

CZ+.§2= 1
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By setting
X = (iRl (6.3-15)
diagla] ... ay] = CT C (6.3-16)
diag[B) ... 8y) = ST S (6.3-17)
then

XH (AR A) X = diagla) ... ay]

X (H ) X

diag[B] ... BN]

and it follows that X is the matrix simultaneously diagonalizing éﬂ.é
and EH.Q. Therefore, using this approach, the estimates for X, the
generalized eigenvalues, and G can be calculated directly from array
data without performing squaring.

The preceding discussion leads to the following processing steps
needed to calculate G: Form data matrices A and B based on appropriate
Fourier series representations, such as the discrete Fourier transform.
Next, calculate the QR decomposition of the A over B matrix. Third,
calculate the singular value decompositions of Q) and Q2. Fourth, form
X from the V and R matrices obtained in steps three and one respec-

tively. Finally,

G = xH[sTs](cTc)~1 xH (6.3-18)
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6.4 Adaptive Covariance Kernel Estimation

Several details involved with covariance kernel estimation must be
worked out. Since these estimates depend on array data, it is clear
that the proper information rust be used to construct the estimates.
For example, EN("°) must be constructed from measurements given no
siznal present. Similarly, both signal and noise should he present in
the measurements used to generate data matrix A. However, these steps
present a dilemma, since the processor is designed to perform detec-
tion. How can the covariance kernel estimates be constructed without a
priori knowledge of the correct hvpothesis?

The answer to this question relates to the fundamental nature of
adaptive processing systems. Building the covariance kernel estimates
is a learning step in which a priori knowledge of the underlying data
structure must be known., Therefore, in order to determine Ry(*,*) and
31(-,~), we will assume that a priori knowledge of the correct
hypothesis is available,

In the active detection problem, one can use the scheme in
Figure 6=3 [4]. Here T' is the return travel time of the probing sig-
nal, and T is once again the observation interval. The noise covariance
kernel estimate can he formulated during the interval T', and used in
subsequent detection. The signal plus noise kernel is estimated over
the time interval T.

Calculating the signal alone kernel is not quite as straight-

forward, since signal alone measurements are not available. However,
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the probing signal s(*) is under our control, and if its energy is large

enough, we can argue that:

r(t, w) = £s(t) + n(t, w) ~ £s(t) (6.4-1)

and by proper scaling of the data measurements, the kernel By("')
corresponding to the data measured over the time interval T can be esti-
mated. Clearlyv, a high signal-to-noise ratio is needed during this
step. This is reasonable from a system identification point of view,
since By("') represents the second order statistics of an unknown
linear system. Systen identification is fundamentally a high signal-to-
noise ratio process. Of course, once the data matrix B is formed at a
high signal~-to-noise ratio, the solution can be incorporated into the
detection process, which is generally carried out in low signal-to-noise

situations.

h.5 Conclusions

e have examined the adaptive implementation issues in some detail
and have proposed processing schemes bhased on robust, state-of-the-art
numerical algorithms. Our results have established interesting con-

nections between several canonical matrix decompositions and the spec-

tral representations of Q(+,+) and G(+,*) presented in Chapter 4.

It is clear that the singular value decomposition is a verv useful
nunerical processing tool. The eigenvectors and eigenvalues of the
estimated power spectral density matrices were obtained directly from
data matrices without performing a squaring operation. 1In another con-

text, this decomposition could be used to estimate covariance matrix
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elgenvectors from array measurements. The advantages of this approach

are well documented [46].

We proposed using the CS decomposition to solve for_g(-,') numer-
ically. This method is equivalent to noise coefficient decorrelation
followed by a Karhunen-Loeve transformation. Furthermore, the CS
decomposition solves for the generalized eigenvectors and eigenvectors
of Rj(+,*) and Ey("') directly from data matrices, once again making
matrix multiplication unnecessary.

Finally, we showed how to adaptively estimate the covariance
kernels from array measurements. This part of the problem must he
interpreted as a learning procedure performed prior to detection.
Ey(',-) must be ohtained at a high signal-to-necise ratio, since this

represents a system identification procedure.
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Chapter 7

NUMERICAL EXAMPLE: DETECTION IN MULTIPATH CHANNELS

7.1 Introduction

This chapter has two purposes: first, to compare the performance
of the optimal processor to that of suboptimal methods, and second, to
verify through numerical simulations that the processing schemes pro-
posed in Chapter 6 are correct. We have selected an example of signifi-
cant practical importance; specifically, detection in a multipath
propagation channel, where the signal arrives at the array in several
partially or fully correlated wavefronts.

In Section 7.2, the problem is posed and the measurement model is
derived in detail. Next, expressions for a meaningful receiver perfor-
mance criteria are evaluated. The results will be used to compare the
estimator-correlator processor with suboptimal processing techniques in
Section 7.4. The performance of the generalized eigenvalue decomposi-
tion is evaluated in Section 7.5, and finally, the relationship between

identification and detector performance is examined in Section 7.6.

7.2 Problem Formulation

The environment and specific array geometrv which will be examined
in this chapter are described in this section. A narrowband signal
s(+*) is transmitted into the medium. In a multipath propagation
channel, the returning signal arrives at the array from p directions.
The matrix representation of £(+) was derived in Section 3.4.4, and in

terms of this model, the desired signal v(+,-) is:
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y(t, w) = £s(t) = bk(w) Y s(t) (7.2-1)

ne~31o

k=1

wherelk is the steering vector associated with the kth arrival direc-
tion, and by(+) is a complex random variable representing path loss and
phase shift effects.

The noise process has two components: spatially uncorrelated sen-
sor noise, plus correlated noise from an angular spread source. The
spread source is large with respect to the signal wavelength, meaning

that a point scatterer representation of this component is inadequate.

Its value at the ith sensor is:

n (t, w) = [ b8, w) n(t - 1,(8)) do (7.2-2)
i A i

Assuming a narrowband n(+), and approximating the integral with a sum

leads to the following model for the colored noise component:

b (@) v, n(t) (7.2-3)

t t~1a

vhere the {bj(+)} terms and {vj} vectors are analogous to those dis-
cussed previouslyv.

Evaluating the optimal processor requires the second order
statistics of the signal process, the noise process, and the signal plus

noise process as measured at the array.,
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k=1 g=1 ¢
p P p P
= - H 2 * H 2
=e{ 0 I bobyyv v Is)T} = ] I v E{p,b7} v, [s(e)]
k=1 g=1 <% Tk k=1 g=1 K& kLl L
2 H
-olvR Y
where
v [v1 Vo e Xp] (7.2-4)

is a Vandermonde matrix whose columns are the steering vectors of the
.. 2, . .

arriving planar wavefronts, o  is the signal power, and BB is the

correlation matrix of the {bk(-)} coefficients. Of course, the wave-

fronts are uncorrelated if E{bk b;} is identically zero when k # 2.

The noise covariance matrix is

= crz I+ 02 V. R VH (7.2-5)
R w - N —N —BN —N y

2 . . . .
where 9, is the sensor noise variance, V_ is a matrix whose columns are

the steering vectors {Xi}' and EBN is the covariance matrix of the path

coefficients.

Finallyv, the signal plus noise covariance matrix R} is the sum of

ST AREHRISEAXAW L ARV Ey Y TSy rsrETRRESEST ST

RN and Ry, because we have assumed uncorrelated signal and noise compo-
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The optimal receiver for a snapshot of data is

Mo = ey - RTDx (7.2-6) o

and the estimator-correlator form of A(+) is &

:'do
4

Mo = el R R e (7.2-7)
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This processor is seldom applied in practical array processing

nl‘l (14
A S
{d'l.‘
Ol

problems., 1In practice, when the arrival directions in a multipath

’
*y

Ny
<

»

Y
h
r
&S

’
LA
.
a4

channel are unknown, a set of closely spaced steering vectors is used to

PN
‘ A 3
ja
{f'f

cover the sector from which the strongest return is expected. The

¥
-‘
)

e

|

}

)

]
3
)

3
\
\
1
E
N
a)
A
X
§
t
r

steering vectors, multiplied by the known signal s(t), are a set of
spatial filters matched against deterministic point sources immersed in

an anisotropic noise field. The suboptimal log-likelihood ratio

:

Py

Ao = xRS v(e) (o) (7.2-8) S

'*l"‘l'

ot

is corputed for each steering vector, and the maximum value is used as ..

‘\:1
[

2
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the test statistic.
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Clearly, it is easier to calculate (7.2-8) than to identify Ry and
implement the optimal structure. Is optimal processing worth the added
complexitv? In order to answer this question, a meaningful performance
criteria is needed by which the structures (7.,2-7) and (7.2-8) can be

compared numerically. This will be addressed in the next section,
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7.3 Derivation of the Detection Index ':.r%.‘ )
» . y ¥
RIS
7.3.1 Definition and Significance °
}l {f'«f'
N We shall use the detection index as the performance criteria: u':_-.i-."-.*
X e
.'.r\-r\.'\
P
¥ 2 2 f:'f:f '+
. E{[2]° | H} - E{|2]" | Hot g L
! A= 5 (7.3-1) ] /
E(]2]7 | Ry} LA
S
» WA
AN
\j\. N
A '\‘t}.:_\
where £ is the log-likelihood functional. This is a meaningful criteria ~a ".r\
¥ for two reasons. First, the detection index can be interpreted as the ARt
"
. RAASE N
X _ ) ' _ ‘ ‘ RS
output signal-to-noise ratio, which means that the processing gain of _-.';\_--;~..:
: -:'.r:.-::.r::.r
both structures can be calculated and compared. Also, it can be shown E\':\.:x::
e
r. that A relates the detection probabilitv to probability of false alarm: :}:‘if‘;u',:.r'\'
b PN
O :.w.'.r_‘.‘:.rz
. ~.F_"J'.'-'. “a
: 1+A o _:)':'-: \‘,,-“
. = P (7.3-2) n A
A F D eu st
e
“ TART
Clearly, for a given detection probability, A should be as large as :.:-"'»:.:-“:-"
':.':'.‘_\"‘:\.'{; g
' 2 3 3 . I3 '-\.- .-‘\'.‘..l
" possible to minimize the probability of false alarm. Equation (7.3-2) PORSESL
. e N g™
‘A.‘\. lﬂ*- !
can be used to construct receiver operating characteristics for the ®
RIS B v i i
. A SANAY
. : . . NN A
) estimator—-correlator and the suboptimal processor. The significance of RO ATN
EACAC A
N
. ER
these criteria is well documented [44][47]. )
BENNTAS
, -\u\-‘l.'i 3
5 7.3.2 Derivation for the Suboptimal Processor
D)
!
", First, the suboptimal detection index will he calculated.
N Equation (7.3~1) can be evaluated in terms of the channel output
p. £s and the estimated channel output i’.' The latter term represents the
~
‘ processing signal which is correlated with the filtered version of r(t).
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and the second is:

There fore,
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(v)} (7.3-4)

(7.3-5)

(7.3-6)

(7.3-7)
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The final result for A is:

et (2)" RN D)

~H -1 ,~

R v

()" Ry (¥)

This expression will be used to evaluate suboptimal processing
performance.

The processing signal 2

multiplied by a steering vector.

Then Equation (7.3-8) becomes

e[ (es)" B! v(o) [sce) 27
A=

o) & vie) Is(o))?

Evaluating A in terms of the measurement model (7.2-1)

tion matrix Rg is useful for computation. Writing the numerator of

Equation (7.3-9) in terms of the measurement model gives:

E{l(fg)H 5;1 v(8) s(t)fz} = E{|]

Loy s)]" r ' ve) s(e))h

k

it t~310

1

Expanding this expression vields
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used ian (7.3-8) is the scalar signal s(t)

Denote the steering vector by v(8).

(7.3-9) S

and the correla-

(7.3-10)
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In order to express Equation (7.3-10) in terms of Rp, define the

Hermitian form

(7.3-11)

;l v(8)

R

vH
—k

Vi

(7.3-12)

2
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E{] ] b
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Then

for simplicity, we have dropped the w notation. Rearranging

where,

Equation (7.3-12) gives

p
)

D

)
k=1 k

(7.3-13)

1

where

(7.3-14)

and from (7.3-11),

(7.3-14)

e g W

It is easy to show that

We recall that vy is the ith steering vector.

the denominator of Equation (7.3-8) is
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More will be said about (7.3-16) later when specific situations are

considered.

7.3.3 Derivation for the Optimal Processor

A closed form solution for the optimal structure detection index is
\ most easily derived by expressing the log-likelihood ratio in its

Hermitian form representation:

| @) = 2Ry - R Dx (7.3-17)

Since r is normally distributed under either hypothesis, evaluating

E{|£|2 | Ho} and E{|2|2 | Hy} is equivalent to calculating the expecta-
tion of the product of random Hermitian forms. The solution for multi-
variate normal distributions is well known and available in the statis-

tical literature [48]. Using these results leads to the following:

T m e A

-1 2
- RO R D

E(]2]? | W} = (trace [(3;,1

1

-1 -1 -1 -1
+ 2 trace [(Ry - R;°) R(Ry" - R DR

1

The arguments of the trace operator can be simplified since
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-1
_\_/_H(e) Ry v(®) ls(t)l2
Combining these results leads to the result
§
XH Rp ¥ 2
A = og (7.3-16)
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-1 -1 _ ol _ ! _ _ ol _
(EN -31 )Bl -BN B—l _I_ B*N (El -}EN) EN _R_y (7.3-19)

Substituting (7.3-19) into (7.3-18) gives
ECIef? | H) = [trace (=)} _gy)}z + 2 trace [(R)' gy)zl (7.3-20)

Furthermore, it is easy to show that

.
h ]

2

&
v

E([2]? | Hy} = [trace (R]' gy)]2 + 2 trace [(R]' ROFT (7.3-21)
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Therefore, the detection index is evaluated by substituting these
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results into Equation (7.3-1).

7.4 Numerical Simulation Results
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7.4.1 Experimental Description
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and was centered at 5° with respect to arrav boresight. Correlation

coefficients for the signal wavefronts were given by:

(o, -9,)°  2n(o, - 0,)
150 - 360 }

E{bk(w)b;t(w)} = exp{- (7.4-1)

where O is the arrival direction of the kth wavefront in degrees. This
expression was used to calculate the entries in Rg., It was also used to
generate the entries in the noise wavefront correlation matrix Rgy,
implying that the signal and noise processes have similar statistical
2 2 2 X

properties. The parameters os, Turs and o, vere adjusted to vary the
input signal-to-noise ratio.

The input signal-to-noise ratio was defined as the average signal

power summed over the array divided by the average noise power over the

array:

SNR = 10 log (trace By/trace RN) (7.4=2)

7.4.2 Optimal Versus Suboptimal Processing

Figure 7-1 illustrates processing gain as a function of input
signal-to-noise ratio. These results show that optimal processing
affords at least 8 dB improvement over suboptimal processing.

Receiver operating characteristics for input signal-to-noise ratios
of -20 dB, -12 dB, and -9 dB are presented in Figures 7-2, 7-3, and 7-4,
respectively., At very low signal-to-noise ratios (less than -20 dB),

the performance of the estimator-correlator is not significantly better
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than the suboptimal processor, because in both cases, A is small, and
the sum 1 + A is approximately one. Therefore, the eight dB processing
gain is not translated into an improvement in detection probability for
a given false alarm rate. However, once the SNR is greater than -20 dB,

improvement with respect to this criteria can be clearly seen.

7.5 Calculating the Estimator Kernel

7.5.1 Introduction

The second half of this study actually has two purposes: first, to
demonstrate that the generalized singular value decomposition can be
used to construct E(-,') directly from data, and second, to determine
what signal-to-noise ratio is needed to estimate Ey(-,') (or to form
data matrix g). This is an important parameter. Of course, the probing
signal is under our control, therefore in principle, the input SNR could
be raised to any desired magnitude. However, in practical situations
this is clearly not possible; therefore, the ability to estimate Ey(-,-)
and £(+) at a moderate SNR is highly desirable. If an input SNR of 80
dB is needed for identification, one can safely conclude that this

approach to adaptive implementation is impractical!

7.5.2 Experimental Description

The multipath channel model, noise models, and array model are
identical to those presented in Sections 7.2 and 7.4.1. Both Ry and RN
were normalized so that each had unit trace, meaning that the nominal

input SNR was 0 dB.
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In order to generate simulated array measurements, a standard IMSL

routine was used to first generate sets of white Gaussian noise. Next,

s

the white noise was formed into random vectors, and filtered by the

2

z
A

square roots of Ry and RN in order to construct random vectors. After

]

L 4

iltering, the random vectors represented array data given signal alone

vl
»

and noise alone, respectively. Noisy measurements of the channel output

3
P
s

were constructed by scaling the signal alone vectors and adding them

LANASY

'
Ky
‘} R

to the noise alone vectors.

TN
o
LA A

)
5

7.5.3 Results

FIoN

Several generalized singular value decomposition algorithms were

A
In

L s
54,

made available to the author courtesy of Charles Van lLoan of Cornell
University. After modifving several of them for complex-valued
matrices, they were tested in two ways. First, we attempted to calcu-
late G from the square roots of the actual covariance matrices Rj and

Ry. To do this, their eigenvalue decompositions were computed, and

matrices A and B were defined as follows:

g'e

1/2 _ ,1/2
a »El —AI Hl (7.5-1)

o r
b

')l
P
S

ot
A

g1/2 . 12
=y =y

=

(7.5-2)

| TVTEY Vv F B Temem e e
~

It is clear from Equations (7.5-1) and (7.5-2) that

A A = Ry (7.5-3)
N
.“l
Y
BB =Ry (7.5-4) >
\ 3
»
DT R R IR I I I Sy St N A e T et T e T e T e T e
LTSN AR Ml T S N



By following the procedure in Section 6.3.3, it should be possible to
calculate G from (7.5-1) and (7.5-2).
We found that the procedure discussed above worked perfectly. The

result was compared with

and the answers matched exactly. We concluded that the algorithms
worked correctly, and that it should be possible to compute G from data.

Next, we attempted to calculate E(',‘) directly from array data
matrices. Data matrix A was formed from 256 array measurements given a
priori knowledge that H) was true. The data matrix B was formed by
increasing the probing signal power, taking 256 array measurements, and
then scaling the matrix by a factor of 1/3g. This step normalized the
trace of év to the proper value, which in this example was unity. The
dimensions of A and B were 256 by 8. These matrices were input into the
generalized singular value decomposition algorithm, and the processing
steps described in Section 6.3.3 were followed in an attempt to compute
G(*,*).

Unfortunately, these attempts were unsuccessful. The data matiix B
was constructed at signal-to-noise ratios ranging from eight to 25 dB,
and in all cases, the algorithm was unstable. We do not know why the

algorithms did not work during these trials; however, since the algor-

ithms are very new, it is likely that the computer programs have not

heen perfected.
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Another approach to the problem was tried. Since the algorithms

worked for the square roots of R) and Ry, we computed the covariance

matrix estimates Rl and Rv by
R, = AH A
_l —_— —
R = BH B
Sy T = =

0f course, this procedure defeats the reason why the CS decomposition
was proposed in the first place, but we wanted to demonstrate in prin-
ciple that G(*,*) could be constructed from data! Next, eigenvalue

decompositions of 31 and Ey were computed, and their square roots

formed. The processing procedure in Section 6.3.3 was carried out using

the square rocts of the estimated covariance matrices in another attempt
to obtain G(+,*) from array data.

This approach was successful, and furthermore, accurate estimates
of Ry could be made at moderate signal-to-noise ratios. An input SNR of
15 dB was sufficient for excellent identification. This judgement was
empirical, because we compared the actual Ey to the estimated matrix
element by element, As the input SNR was increased, we found iittle
improvement after an SNR of 15 dB was attained. We concluded that the
identification scheme is feasible, and can be carried out at a moderate
SNR., Although 1t is not possible to generalize these results with
absolute certalinty, it seems reasonable to conclude that they carry over

to other channel models.
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7.6 Relating Identification to Processor Performance

Nan

\(\r r

The results from Section 7.5 demonstrated that Ey(-,-) could be
identified accurately at moderate signal-to-noise ratios. However, they
did not made a connection between identification and optimal processor
performance. Therefore, further experiments were conducted in order to
determine how well Ey(',°) must be identified to obtain processing gain
improvement as compared to suboptimal methods.

The channel, noise, and array models were identical to those

.
Ay

presented in Sections 7.2, 7.4.1, and 7.5.2, The optimal detection

LS

index & (Equation (7.3-1)) was evaluated for By("') identified at low

wALS
R

h ]

and high signal-to-noise ratios. Closed-form expressions for E{[2[2|H|}
and E{|%2|2]|Hg} given misidentified Ry(*,*) can be obtained; however,
they are difficult to evaluate analytically. Therefore, Monte Carlo
methods were used to evaluate A.

The results of our experiments are illustrated in Figure 7-5. They

are interesting and intuitively pleasing. As the signal-to-noise ratio

o
2
"
-
-
o

increases, the processing gain approaches the theoretical predicted
maximum. Little processing improvement is achieved above an identifi-

cation SNR of 15 dB, which makes the connection between receiver per-

auaa’a a2 ¥

formance and the empirical observation made in the previous section.

However, the most significant conclusion of this experiment is that even

S e Ml

a poor identification results in improved detection. Perfect identifi-

cation at high signal-to-noise ratios is not needed.
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7.7 Conclusions -
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Matrix representations can be used to model non-trivial propagation

L4
Z

h )

;\ﬂ
Ay
I’ ’5

a

and scattering channels, and are a useful tool for computer simulation
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experiments., In this chapter, they were used successfully to evaluate

S(\
»
AR

4
h]

P,

L

S e N
o

the estimator-correlator processor, compare its performance against a
suboptimal receiver, and to generate simulated array measurements for

testing new computational algorithms.

PR

The relationship between identification and receiver performance

L e
. -,:_.,
. was examined. We found that perfect identification was not required to S
. e
3 . . . . . A
: improve processing gain. Even a poor identification conducted at a low %ﬁ“,;
) ‘>
Fig e

SNR resulted in some improvement.

- Also, the verformance of optimal versus suboptimal processing was
;: evaluated numerically. It was found that optimal processing gives at
least eight dB improvement over suboptimal techniques. For input
.
. signal-to-noise ratios greater than -20 dB, this translated into an
S improved receiver operating characteristic.
N
The performance of new generalized singular value decomposition
. algorithms was evaluated. Ve had some difficulties with them, vet were
:: able to show that E(-,*) could be computed in principle. There is
'
nothing incorrect with the proposed processing scheme. The programs e
] .'.-_‘
-‘ i ‘l.‘\ .
. which were tested are new, and require further testing and debugging. S
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Chapter 8

CONCLUDING REMARKS

8.1 Conclusions

The estimator-correlator processor establishes fundamental connec-
tions among detection theory, estimation theory, system modeling, and
system identification theory. Variations of this canonical structure
solve the detection problem for the generalized exponential class of
signal and noise distributions. This result establishes a basic
connection between detection and estimation theory.

An operator theoretic approach to the channel representation
problem allows the detection and modeling problems to be solved for a
very wide class of transmission media, especially spread channels, which
are particularly difficult to handle. Moreover, this systematic
approach made the full power of Hilbert space theory and functional
analysis available for use in subsequent derivations.

Matrix representations of bounded, linear operators are useful for
modeling a wide range of deterministic and stochastic transformations
one might encounter in practical array processing problems. They are
easily incorporated into the estimator-correlator structure. Identifi-
caticn of £(*) as represented by matrices is needed in order to calcu-

late the conditional mean of the channel output £s(t). Measuring the

matrix element cross—-correlations represents a systematic approach to
stochastic Green's function identification.
The channel identification problem can be simplified through

simultaneous diagonalization of the input and output covariance kernels,
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Simultaneous diagonalization can be accomplished either through signal
design or generalized singular value decomposition. The result
establishes an interesting connection among detection, estimation,
system modeling, and identification, and in addition, provides new
insight into classical system identification issues. The Karhunen-Loeve
expansion furnishes a fundamental structure for stochastic system
modeling and identification.

j Solving the space-time processor equations through orthogonal

decompositions represents the most important accomplishment of this

dissertation. Karhunen-Loeve representations are the key to both
‘ theoretical analysis and adaptive implementation. Important connections
b between this expansion and other decompositions, including the singular
value decomposition, CS decompositions, generalized eigenvalue factori-
zations, QR factorizations, and generalized Fourier series have been
made. Combinations of these canonical decompositions and orthonormal
representations provide the key to implementing the processor with
numerically robust algorithms,
The array processing algorithms proposed in this dissertation are
» more than academic ideas that can not work in practice. They were
thoroughly tested and they work well. The computational burden is worth
| the effort, because optimal processing is significantly better than
simpler suboptimal techniques. 1Ildentification can be carried out at
Yo moderate signal-to-noise ratios. Moreover, perfect channel
identification is unnecessary. Even a poor identification improves

receiver performance,
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8.2 Recommendations for Future Research

The numerical problems involved with implementing the estimator-
correlator must be examined. It is not known how finite-precision word
lengths, matrix ill-conditioning, and channel misidentification work
together to affect the performance of the estimator-correlator.
Understanding these effects is crucial in order to build the processor
in hardware.

Several theoretical issues warrant further research. For example,
some recent work suggests that the structure of L(*) gives insight into
“how far"” a stochastic system deviates from stationarity. This idea
needs to be developed, since it has the potential to give new insights
into stochastic system characterization.

In this dissertation, the theoretical foundations of optimal space-
time array processing have been examined at length. We demonstrated how
the processing equations can be solved and implemented with robust
numerical algorithms,

It is clear from Chapter 6 that implementing the

processor is very demanding computationallv. However, the data flow and
computations are regular, repetitive, and well suited for parallel
computations by distributed processors. Algorithms for performing
singular value decompositions and CS decompositions that are amenable to
parallel processing or systolic array implementation need to be
developed. Solving these problems will require new basic computational
cells and new methods to assess their computational complexity.

Developing new basic computational cells will require a deeper

understanding of the fundamental structure of computational algorithms,
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For example, a basic algorithm used in many signal processing operations

is the generalized coordinate rotation [49). In many appli-zations, it
can be regarded as more fundamental than even the traditional floating
point operation (complex multiply-and-accumulate)., Surprisingly enough,
the generalized coordinate rotation algorithm has a fundamental connec-
tion with Lie group theory, an abstract mathematical discipline [50].
More work in this area is needed to establish deeper connections between
Lie group theory and basic signal processing algorithms,

The connection between the work presented in this dissertation and
other basic research areas in adaptive signal processing is presented in
Figure 8-1., The overall effort calls on disciplines such as Lie group
theory, graph theory, and information-theoretic analysis of computa-
tional complexity, in addition to stochastic operator theory, numerical
analysis, and integral equation theory.

All of these tools contribute

to the understanding needed for efficient optimal array processor

design.
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APPENDIX

CONTOUR INTEGRAL EVALUATION

Calculating the matrix representations for the operators appearing

in Sections 3.2.3, 3.2.5, and 3.2.6 requires evaluating three definite

omm..

integrals.

e

et

The representation for the time delav operator is

(.-.' N %
Y P NN -
Al
e
-v. \.ﬂ\-«ﬁ..

LA D O )

(A-1)

g(t - aT) de

sin o(t = 1 = mT) sin s(t ~ nT)
g(t - 1 - mT)

<+
/
—a0

=1
<Ar¢m’¢n> T

a
mn

To evaluate Equation (A~1), begin by simplifving the product in the

numerator using the trigonometric identity

el f ko

1 1
5 cos(a 8) -5 cos(a + B)

sin a sin B

noT then

By setting a = o1 + moT and b

sin(oT - a)sin(ot - b) =

sin o(t - 1 - mT)sin o(t - nT)

1

cos(b - a) - 3 cos(2at =~ (a + b))

1
2

and (A-1) becomes

(A-2)

dt

¢ cos(2o0t - (a + b))

+m
J
-

_ 1
2T

cos{b ~ a)
(ot - a)(at - b)
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dz = =i Z Res f(z)

exp(i(20z - (a + b))
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(gz - a)(oz - b)
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where
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(oz - a)(oz - b)

exp(i(20z - (a + b))

(z)
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The residue of f at a/o is

i(a-b)
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the residues and multiplying the result by ni gives
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Returning to Equation (A-1) gives:

Almost finished!
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dt

o{t = nT)

sing(at - (an - m)T/a)
olat - (an - m)T/a)

sino(at - 1 - mT) sinc(t - nT)
o(lat ~ 1 - mT)
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the representation of the combined delav and stretching
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using the method of residues, with the result

operator is obtained by evaluating
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